skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference
Abstract Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs — designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.  more » « less
Award ID(s):
1655499 1831944 2021898 2025849
PAR ID:
10423430
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Experiments have long been the gold standard for causal inference in Ecology. As Ecology tackles progressively larger problems, however, we are moving beyond the scales at which randomised controlled experiments are feasible. To answer causal questions at scale, we need to also use observational data —something Ecologists tend to view with great scepticism. The major challenge using observational data for causal inference is confounding variables: variables affecting both a causal variable and response of interest. Unmeasured confounders—known or unknown—lead to statistical bias, creating spurious correlations and masking true causal relationships. To combat this omitted variable bias, other disciplines have developed rigorous approaches for causal inference from observational data that flexibly control for broad suites of confounding variables. We show how ecologists can harness some of these methods—causal diagrams to identify confounders coupled with nested sampling and statistical designs—to reduce risks of omitted variable bias. Using an example of estimating warming effects on snails, we show how current methods in Ecology (e.g., mixed models) produce incorrect inferences due to omitted variable bias and how alternative methods can eliminate it, improving causal inferences with weaker assumptions. Our goal is to expand tools for causal inference using observational and imperfect experimental data in Ecology. 
    more » « less
  2. Abstract Given that terrestrial ecosystems globally are facing the loss of biodiversity from land use conversion, invasive species, and climate change, effective management requires a better understanding of the drivers and correlates of biodiversity. Increasingly, biodiversity is co‐managed with aboveground carbon storage because high biodiversity in animal species is observed to correlate with high aboveground carbon storage. Most previous investigations into the relationship of biodiversity and carbon co‐management do not focus on the biodiversity of the species rich plant kingdom, which may have tradeoffs with carbon storage. To examine the relationships of plant species richness with aboveground tree biomass carbon storage, we used a series of generalized linear models with understory plant species richness and diversity data from the USDA Forest Service Forest Inventory and Analysis dataset and high‐resolution modeled carbon maps for the Tongass National Forest. Functional trait data from the TRY database was used to understand the potential mechanisms that drive the response of understory plants. Understory species richness and community weighted mean leaf dry matter content decreased along an increasing gradient of tree biomass carbon storage, but understory diversity, community weighted mean specific leaf area, and plant height at maturity did not. Leaf dry matter content had little variance at the community level. The decline of understory plant species richness but not diversity to increases in aboveground biomass carbon storage suggests that rare species are excluded in aboveground biomass carbon dense areas. These decreases in understory species richness reflect a tradeoff between the understory plant community and aboveground carbon storage. The mechanisms that are associated with observed plant communities along a gradient of biomass carbon storage in this forest suggest that slower‐growing plant strategies are less effective in the presence of high biomass carbon dense trees in the overstory. 
    more » « less
  3. Abstract Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale‐dependent impact of biological invasions on native richness from the shape of the native species–area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non‐native plant cover. Decreases in native richness were consistently associated with non‐native species cover, but native richness was compromised only at relatively high levels of non‐native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross‐scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions. 
    more » « less
  4. Despite experimental and observational studies demonstrating that biodiversity enhances primary productivity, the best metric for predicting productivity at broad geographic extents—functional trait diversity, phylogenetic diversity, or species richness—remains unknown. Using >1.8 million tree measurements from across eastern US forests, we quantified relationships among functional trait diversity, phylogenetic diversity, species richness, and productivity. Surprisingly, functional trait and phylogenetic diversity explained little variation in productivity that could not be explained by tree species richness. This result was consistent across the entire eastern United States, within ecoprovinces, and within data subsets that controlled for biomass or stand age. Metrics of functional trait and phylogenetic diversity that were independent of species richness were negatively correlated with productivity. This last result suggests that processes that determine species sorting and packing are likely important for the relationships between productivity and biodiversity. This result also demonstrates the potential confusion that can arise when interdependencies among different diversity metrics are ignored. Our findings show the value of species richness as a predictive tool and highlight gaps in knowledge about linkages between functional diversity and ecosystem functioning. 
    more » « less
  5. 1. Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analyzed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. 2. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behavior, incorporating environmental realism not possible in the lab while benefiting from the distinct capacity of camera traps to generate large data sets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. 3. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. 4. Only 9% of camera trap studies on predator-prey ecology in our review mention experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. 5. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances. 
    more » « less