skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gas-phase preparation of silylacetylene (SiH 3 CCH) through a counterintuitive ethynyl radical (C 2 H) insertion
Elementary reaction mechanisms constitute a fundamental infrastructure for chemical processes as a whole. However, while these mechanisms are well understood for second-period elements, involving those of the third period and beyond can introduce unorthodox reactivity. Combining crossed molecular beam experiments with electronic structure calculations and molecular dynamics simulations, we provide compelling evidence on an exotic insertion of an unsaturated sigma doublet radical into a silicon-hydrogen bond as observed in the barrierless gas-phase reaction of the D1-ethynyl radical (C2D) with silane (SiH4). This pathway, which leads to the D1-silylacetylene (SiH3CCD) product via atomic hydrogen loss, challenges the prerequisite and fundamental concept that two reactive electrons and an empty orbital are required for the open shell, unsaturated radical reactant to insert into a single bond.  more » « less
Award ID(s):
2244717
PAR ID:
10575403
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science advances
Volume:
10
Issue:
46
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium‐hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen‐bridged germylidynesilane intermediate (H3Si(μ‐H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon‐germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon‐germanium species at the microscopic level exploiting crossed molecular beams. 
    more » « less
  2. The reactions of the D1-silylidyne radical (SiD; X 2 Π) with deuterium sulfide (D 2 S; X 1 A 1 ) and hydrogen sulfide (H 2 S; X 1 A 1 ) were conducted utilizing a crossed molecular beams machine under single collision conditions. The experimental work was carried out in conjunction with electronic structure calculations. The elementary reaction commences with a barrierless addition of the D1-silylidyne radical to one of the non-bonding electron pairs of the sulfur atom of hydrogen (deuterium) sulfide followed by possible bond rotation isomerization and multiple atomic hydrogen (deuterium) migrations. Unimolecular decomposition of the reaction intermediates lead eventually to the D1-thiosilaformyl radical (DSiS) (p1) and D2-silanethione (D 2 SiS) (p3) via molecular and atomic deuterium loss channels (SiD–D 2 S system) along with the D1-thiosilaformyl radical (DSiS) (p1) and D1-silanethione (HDSiS) (p3) through molecular and atomic hydrogen ejection (SiD–H 2 S system) via indirect scattering dynamics in barrierless and overall exoergic reactions. Our study provides a look into the complex dynamics of the silicon and sulfur chemistries involving multiple deuterium/hydrogen shifts and tight exit transition states, as well as insight into silicon- and sulfur-containing molecule formation pathways in deep space. Although neither of the non-deuterated species – the thiosilaformyl radical (HSiS) and silanethione (H 2 SiS) – have been observed in the interstellar medium (ISM) thus far, astrochemical models presented here predict relative abundances in the Orion Kleinmann-Low nebula to be sufficiently high enough for detection. 
    more » « less
  3. The gas-phase reaction of the methylidyne (CH; X 2 Π) radical with dimethylacetylene (CH 3 CCCH 3 ; X 1 A 1g ) was studied at a collision energy of 20.6 kJ mol −1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C 5 H 7 reaction intermediate(s) ultimately dissociating to C 5 H 6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon–carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon–hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively ‘screen’ the carbon–carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C 2 H 6 ) forming propylene (CH 3 C 2 H 3 ). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH 3 CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne – ethane system. 
    more » « less
  4. null (Ed.)
    Since the postulation of carbenes by Buchner (1903) and Staudinger (1912) as electron-deficient transient species carrying a divalent carbon atom, carbenes have emerged as key reactive intermediates in organic synthesis and in molecular mass growth processes leading eventually to carbonaceous nanostructures in the interstellar medium and in combustion systems. Contemplating the short lifetimes of these transient molecules and their tendency for dimerization, free carbenes represent one of the foremost obscured classes of organic reactive intermediates. Here, we afford an exceptional glance into the fundamentally unknown gas-phase chemistry of preparing two prototype carbenes with distinct multiplicities—triplet pentadiynylidene (HCCCCCH) and singlet ethynylcyclopropenylidene (c-C 5 H 2 ) carbene—via the elementary reaction of the simplest organic radical—methylidyne (CH)—with diacetylene (HCCCCH) under single-collision conditions. Our combination of crossed molecular beam data with electronic structure calculations and quasi-classical trajectory simulations reveals fundamental reaction mechanisms and facilitates an intimate understanding of bond-breaking processes and isomerization processes of highly reactive hydrocarbon intermediates. The agreement between experimental chemical dynamics studies under single-collision conditions and the outcome of trajectory simulations discloses that molecular beam studies merged with dynamics simulations have advanced to such a level that polyatomic reactions with relevance to extreme astrochemical and combustion chemistry conditions can be elucidated at the molecular level and expanded to higher-order homolog carbenes such as butadiynylcyclopropenylidene and triplet heptatriynylidene, thus offering a versatile strategy to explore the exotic chemistry of novel higher-order carbenes in the gas phase. 
    more » « less
  5. Abstract Hydrazine‐assisted water electrolysis offers a feasible path for low‐voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5‐alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5‐alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5bifunctional electrocatalysts enable, high performance hydrazine‐assisted water electrolysis delivering a current density of 100 mA cm−2at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm−2at a cell voltage of 0.6 V. The RhRu0.5 electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm−2for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine‐assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen. 
    more » « less