Calculations of line broadening are important for many different applications including plasma diagnostics and opacity calculations. One concern is that line-shape models employ many approximations that are not experimentally validated for most element conditions due to challenges with high-fidelity line-shape benchmark experiments. Until such experiments become available, we need to test approximations with ab-initio line-shape calculations. There are three primary formalisms to derive an electron-broadening operator: the impact theory (Baranger, Griem), relaxation theory (Fano), and kinetic theories (Zwanzig, Hussey), all of which give different expressions for electron broadening. The impact and relaxation theories approximate the density matrix as factorizeable while the kinetic theory has a more general density matrix. The impact and kinetic theories relate the electron broadening operator to collision amplitudes, while the relaxation theory has a more complicated formula using projection operators. Each theory has a different prediction for the width and shift of spectral lines, which will become apparent in strongly-coupled plasmas. We have made an effort to better understand the approximations and limitations of all of these approaches and to try to reconcile the differences between them. Here, we present the current status of our understanding of the electron-broadening theories and our preliminary attempt to unify the various formulae. Currently, we have found the projection operator to be necessary part of line broadening. We will be showing (for the first time) how the projection operator broadens spectral lines. 
                        more » 
                        « less   
                    
                            
                            Experimental and computational study of phase space dynamics in strongly coupled plasmas with steep density gradients
                        
                    
    
            Understanding how plasmas thermalize when density gradients are steep remains a fundamental challenge in plasma physics, with direct implications for fusion experiments and astrophysical phenomena. Standard hydrodynamic models break down in these regimes, and kinetic theories make predictions that have never been directly tested. Here, we present the first detailed phase-space measurements of a strongly coupled plasma as it evolves from sharp density gradients to thermal equilibrium. Using laser-induced fluorescence imaging of an ultracold calcium plasma, we track the complete ion distribution function f(x,v,t). We discover that commonly used kinetic models (Bhatnagar–Gross–Krook and Lenard–Bernstein) overpredict thermalization rates, even while correctly capturing the initial counterstreaming plasma formation. Our measurements reveal that the initial ion acceleration response scales linearly with electron temperature, and that the simulations underpredict the initial ion response. In our geometry we demonstrate the formation of well-controlled counterpropagating plasma beams. This experimental platform enables precision tests of kinetic theories and opens new possibilities for studying plasma stopping power and flow-induced instabilities in strongly coupled systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009999
- PAR ID:
- 10575457
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 32
- Issue:
- 3
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Magnetic fields influence ion transport in plasmas. Straightforward comparisons of experimental measurements with plasma theories are complicated when the plasma is inhomogeneous, far from equilibrium, or characterized by strong gradients. To better understand ion transport in a partially magnetized system, we study the hydrodynamic velocity and temperature evolution in an ultracold neutral plasma at intermediate values of the magnetic field. We observe a transverse, radial breathing mode that does not couple to the longitudinal velocity. The inhomogeneous density distribution gives rise to a shear velocity gradient that appears to be only weakly damped. This mode is excited by ion oscillations originating in the wings of the distribution where the plasma becomes non-neutral. The ion temperature shows evidence of an enhanced electron-ion collision rate in the presence of the magnetic field. Ultracold neutral plasmas provide a rich system for studying mode excitation and decay.more » « less
- 
            Abstract Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10–20 Pa or 0.075–0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources.more » « less
- 
            Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.more » « less
- 
            We present observations of wave steepening and signatures of shock formation during expansion of ultracold neutral plasmas formed with an initial density distribution that is centrally peaked and decays exponentially with distance. The plasma acceleration and velocity decrease at large distance from the plasma center, leading to central ions overtaking ions in the outer regions and the development of a steepening front that is narrow compared to the size of the plasma. The density and velocity change dramatically across the front, and significant heating of the ions is observed in the region of steepest gradients. For a reasonable estimate of electron temperature, the relative velocity of ions on either side of the front modestly exceeds the local sound speed (Mach number M≳1). This indicates that by sculpting steep density gradients, it is possible to create the conditions for shock formation, or very close to it, opening a new avenue of research for ultracold neutral plasmas.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
