skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 3, 2025

Title: A Review on Data-Driven Constitutive Laws for Solids
This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon relevant aspects such as data sampling techniques, design of experiment, verification, and validation.  more » « less
Award ID(s):
1846875
PAR ID:
10575554
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Onate, Eugenio; Kleiber, Michal
Publisher / Repository:
Springer
Date Published:
Journal Name:
Archives of Computational Methods in Engineering
ISSN:
1134-3060
Subject(s) / Keyword(s):
constitutive laws machine learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding human perceptions of robot performance is crucial for designing socially intelligent robots that can adapt to human expectations. Current approaches often rely on surveys, which can disrupt ongoing human–robot interactions. As an alternative, we explore predicting people’s perceptions of robot performance using non-verbal behavioral cues and machine learning techniques. We contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in Virtual Reality, together with perceptions of robot performance provided by users on a 5-point scale. We then analyze how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression and spatial behavior features). Our results suggest that facial expressions alone provide useful information, but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques outperformed humans’ predictions in most cases. Further, when predicting robot performance as a binary classification task on unseen users’ data, the F1-Score of machine learning models more than doubled that of predictions on a 5-point scale. This suggested good generalization capabilities, particularly in identifying performance directionality over exact ratings. Based on these findings, we conducted a real-world demonstration where a mobile robot uses a machine learning model to predict how a human who follows it perceives it. Finally, we discuss the implications of our results for implementing these supervised learning models in real-world navigation. Our work paves the path to automatically enhancing robot behavior based on observations of users and inferences about their perceptions of a robot. 
    more » « less
  2. Graph neural networks, a powerful deep learning tool to model graph-structured data, have demonstrated remarkable performance on numerous graph learning tasks. To address the data noise and data scarcity issues in deep graph learning, the research on graph data augmentation has intensified lately. However, conventional data augmentation methods can hardly handle graph-structured data which is defined in non-Euclidean space with multi-modality. In this survey, we formally formulate the problem of graph data augmentation and further review the representative techniques and their applications in different deep graph learning problems. Specifically, we first propose a taxonomy for graph data augmentation techniques and then provide a structured review by categorizing the related work based on the augmented information modalities. Moreover, we summarize the applications of graph data augmentation in two representative problems in data-centric deep graph learning: (1) reliable graph learning which focuses on enhancing the utility of input graph as well as the model capacity via graph data augmentation; and (2) low-resource graph learning which targets on enlarging the labeled training data scale through graph data augmentation. For each problem, we also provide a hierarchical problem taxonomy and review the existing literature related to graph data augmentation. Finally, we point out promising research directions and the challenges in future research. 
    more » « less
  3. null (Ed.)
    This part of the review aims to reduce the start-up burden of data collection and descriptive analytics for statistical modeling and route optimization of risk associated with motor vehicles. From a data-driven bibliometric analysis, we show that the literature is divided into two disparate research streams: (a) predictive or explanatory models that attempt to understand and quantify crash risk based on different driving conditions, and (b) optimization techniques that focus on minimizing crash risk through route/path-selection and rest-break scheduling. Translation of research outcomes between these two streams is limited. To overcome this issue, we present publicly available high-quality data sources (different study designs, outcome variables, and predictor variables) and descriptive analytic techniques (data summarization, visualization, and dimension reduction) that can be used to achieve safer-routing and provide code to facilitate data collection/exploration by practitioners/researchers. Then, we review the statistical and machine learning models used for crash risk modeling. We show that (near) real-time crash risk is rarely considered, which might explain why the optimization models (reviewed in Part 2) have not capitalized on the research outcomes from the first stream. 
    more » « less
  4. Communication is arguably the most important way to enable cooperation among multiple robots. In numerous such settings, robots exchange local sensor measurements to form a global perception of the environment. One example of this setting is adaptive multi-robot informative path planning, where robots’ local measurements are “fused” using probabilistic techniques (e.g., Gaussian process models) for more accurate prediction of the underlying ambient phenomena. In an adversarial setting, in which we assume a malicious entity–-the adversary-–can modify data exchanged during inter-robot communications, these cooperating robots become vulnerable to data integrity attacks. Such attacks on a multi-robot informative path planning system may, for example, replace the original sensor measurements with fake measurements to negatively affect achievable prediction accuracy. In this paper, we study how such an adversary may design data integrity attacks using a Generative Adversarial Network (GAN). Results show the GAN-based techniques learning spatial patterns in training data to produce fake measurements that are relatively undetectable yet significantly degrade prediction accuracy. 
    more » « less
  5. null (Ed.)
    With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time, etc. Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward. On the other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the measured properties, provided there exists a well-defined path to capture and analyze such data. Here, we introduce a new, two-dimensional approach to represent hysteretic response of a material system to applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate how explicit consideration of electromechanical response to two rather than one control voltages enables significantly more transparent and robust interpretation of observed hysteresis, such as differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new data representation readily fits into a variety of machine-learning methodologies, from unsupervised classification of the origins of hysteretic response via linear clustering algorithms to neural-network-based inference of the sample temperature based on the specific morphology of hysteresis. 
    more » « less