Graph machine learning has gained great attention in both academia and industry recently. Most of the graph machine learning models, such as Graph Neural Networks (GNNs), are trained over massive graph data. However, in many realworld scenarios, such as hospitalization prediction in healthcare systems, the graph data is usually stored at multiple data owners and cannot be directly accessed by any other parties due to privacy concerns and regulation restrictions. Federated Graph Machine Learning (FGML) is a promising solution to tackle this challenge by training graph machine learning models in a federated manner. In this survey, we conduct a comprehensive review of the literature in FGML. Specifically, we first provide a new taxonomy to divide the existing problems in FGML into two settings, namely, FL with structured data and structured FL. Then, we review the mainstream techniques in each setting and elaborate on how they address the challenges under FGML. In addition, we summarize the real-world applications of FGML from different domains and introduce open graph datasets and platforms adopted in FGML. Finally, we present several limitations in the existing studies with promising research directions in this field. 
                        more » 
                        « less   
                    
                            
                            Data Augmentation for Deep Graph Learning: A Survey
                        
                    
    
            Graph neural networks, a powerful deep learning tool to model graph-structured data, have demonstrated remarkable performance on numerous graph learning tasks. To address the data noise and data scarcity issues in deep graph learning, the research on graph data augmentation has intensified lately. However, conventional data augmentation methods can hardly handle graph-structured data which is defined in non-Euclidean space with multi-modality. In this survey, we formally formulate the problem of graph data augmentation and further review the representative techniques and their applications in different deep graph learning problems. Specifically, we first propose a taxonomy for graph data augmentation techniques and then provide a structured review by categorizing the related work based on the augmented information modalities. Moreover, we summarize the applications of graph data augmentation in two representative problems in data-centric deep graph learning: (1) reliable graph learning which focuses on enhancing the utility of input graph as well as the model capacity via graph data augmentation; and (2) low-resource graph learning which targets on enlarging the labeled training data scale through graph data augmentation. For each problem, we also provide a hierarchical problem taxonomy and review the existing literature related to graph data augmentation. Finally, we point out promising research directions and the challenges in future research. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10428934
- Date Published:
- Journal Name:
- ACM SIGKDD Explorations Newsletter
- Volume:
- 24
- Issue:
- 2
- ISSN:
- 1931-0145
- Page Range / eLocation ID:
- 61 to 77
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Graph-structured data naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus allows to harvest more insights compared to analyzing data in isolation. However, graph mining is a challenging task due to the underlying complex and diverse connectivity patterns. A potential solution is to learn the representation of a graph in a low-dimensional Euclidean space via embedding techniques that preserve the graph properties. Although tremendous efforts have been made to address the graph representation learning problem, many of them still suffer from their shallow learning mechanisms. On the other hand, deep learning models on graphs have recently emerged in both machine learning and data mining areas and demonstrated superior performance for various problems. In this survey, we conduct a comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models. We first introduce two taxonomies to group the existing works based on the types of convolutions and the areas of applications, then highlight some graph convolutional network models in details. Finally, we present several challenges in this area and discuss potential directions for future research.more » « less
- 
            Anomaly analysis is an important component of any surveillance system. In recent years, it has drawn the attention of the computer vision and machine learning communities. In this article, our overarching goal is thus to provide a coherent and systematic review of state-of-the-art techniques and a comprehensive review of the research works in anomaly analysis. We will provide a broad vision of computational models, datasets, metrics, extensive experiments, and what anomaly analysis can do in images and videos. Intensively covering nearly 200 publications, we review (i) anomaly related surveys, (ii) taxonomy for anomaly problems, (iii) the computational models, (iv) the benchmark datasets for studying abnormalities in images and videos, and (v) the performance of state-of-the-art methods in this research problem. In addition, we provide insightful discussions and pave the way for future work.more » « less
- 
            Graph-theoretic algorithms and graph machine learning models are essential tools for addressing many real-life problems, such as social network analysis and bioinformatics. To support large-scale graph analytics, graph-parallel systems have been actively developed for over one decade, such as Google’s Pregel and Spark’s GraphX, which (i) promote a think-like-a-vertex computing model and target (ii) iterative algorithms and (iii) those problems that output a value for each vertex. However, this model is too restricted for supporting the rich set of heterogeneous operations for graph analytics and machine learning that many real applications demand. In recent years, two new trends emerge in graph-parallel systems research: (1) a novel think-like-a-task computing model that can efficiently support the various computationally expensive problems of subgraph search; and (2) scalable systems for learning graph neural networks. These systems effectively complement the diversity needs of graph-parallel tools that can flexibly work together in a comprehensive graph processing pipeline for real applications, with the capability of capturing structural features. This tutorial will provide an effective categorization of the recent systems in these two directions based on their computing models and adopted techniques, and will review the key design ideas of these systems.more » « less
- 
            Emerging Distributed AI systems are revolutionizing big data computing and data processing capabilities with growing economic and societal impact. However, recent studies have identified new attack surfaces and risks caused by security, privacy, and fairness issues in AI systems. In this paper, we review representative techniques, algorithms, and theoretical foundations for trustworthy distributed AI through robustness guarantee, privacy protection, and fairness awareness in distributed learning. We first provide a brief overview of alternative architectures for distributed learning, discuss inherent vulnerabilities for security, privacy, and fairness of AI algorithms in distributed learning, and analyze why these problems are present in distributed learning regardless of specific architectures. Then we provide a unique taxonomy of countermeasures for trustworthy distributed AI, covering (1) robustness to evasion attacks and irregular queries at inference, and robustness to poisoning attacks, Byzantine attacks, and irregular data distribution during training; (2) privacy protection during distributed learning and model inference at deployment; and (3) AI fairness and governance with respect to both data and models. We conclude with a discussion on open challenges and future research directions toward trustworthy distributed AI, such as the need for trustworthy AI policy guidelines, the AI responsibility-utility co-design, and incentives and compliance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    