skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Investigating Benzoic Acid Derivatives as Potential Atomic Layer Deposition Inhibitors Using Nanoscale Infrared Spectroscopy
Area-selective atomic layer deposition (AS-ALD) is a technique utilized for the fabrication of patterned thin films in the semiconductor industry due to its capability to produce uniform and conformal structures with control over thickness at the atomic scale level. In AS-ALD, surfaces are functionalized such that only specific locations exhibit ALD growth, thus leading to spatial selectivity. Self-assembled monolayers (SAMs) are commonly used as ALD inhibiting agents for AS-ALD. However, the choice of organic molecules as viable options for AS-ALD remains limited and the precise effects of ALD nucleation and exposure to ALD conditions on the structure of SAMs is yet to be fully understood. In this work, we investigate the potential of small molecule carboxylates as ALD inhibitors, namely benzoic acid and two of its derivatives, 4-trifluoromethyl benzoic acid (TBA), and 3,5-Bis (trifluoromethyl)benzoic acid (BTBA) and demonstrate that monolayers of all three molecules are viable options for applications in ALD blocking. We find that the fluorinated SAMs are better ALD inhibitors; however, this property arises not from the hydrophobicity but the coordination chemistry of the SAM. Using nanoscale infrared spectroscopy, we probe the buried monolayer interface to demonstrate that the distribution of carboxylate coordination states and their evolution is correlated with ALD growth, highlighting the importance of the interfacial chemistry in optimizing and assessing ALD inhibitors.  more » « less
Award ID(s):
1911276
PAR ID:
10575886
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Nanomaterials
Volume:
15
Issue:
3
ISSN:
2079-4991
Page Range / eLocation ID:
164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern-day chip manufacturing requires precision in placing chip materials on complex and patterned structures. Area-selective atomic layer deposition (AS-ALD) is a self-aligned manufacturing technique with high precision and control, which offers cost effectiveness compared to the traditional patterning techniques. Self-assembled monolayers (SAMs) have been explored as an avenue for realizing AS-ALD, wherein surface-active sites are modified in a specific pattern via SAMs that are inert to metal deposition, enabling ALD nucleation on the substrate selectively. However, key limitations have limited the potential of AS-ALD as a patterning method. The choice of molecules for ALD blocking SAMs is sparse; furthermore, deficiency in the proper understanding of the SAM chemistry and its changes upon metal layer deposition further adds to the challenges. In this work, we have addressed the above challenges by using nanoscale infrared spectroscopy to investigate the potential of stearic acid (SA) as an ALD inhibiting SAM. We show that SA monolayers on Co and Cu substrates can inhibit ZnO ALD growth on par with other commonly used SAMs, which demonstrates its viability towards AS-ALD. We complement these measurements with AFM-IR, which is a surface-sensitive spatially resolved technique, to obtain spectral insights into the ALD-treated SAMs. The significant insight obtained from AFM-IR is that SA SAMs do not desorb or degrade with ALD, but rather undergo a change in substrate coordination modes, which can affect ALD growth on substrates. 
    more » « less
  2. Chemical self-assembly has garnered tremendous interest as a tool for generating nanometer-scale structures and devices. Organosilane self-assembled monolayers (SAMs) are of particular interest due to their ability to assemble on a wide range of substrates with varied chemical functionalities. Nanoshaving, an atomic force lithographic technique, has been demonstrated as a method to generate nanopatterns of organosilane SAMs. However, this method requires extremely high force setpoints, which rapidly dulls atomic force microscopy tips and degrades the resolution of the resulting nanopattern. In this work, we utilize Cu-ligated mercaptohexadecanoic acid (MHDA) multilayers to circumvent this limitation. Initially, a 10-undecenyltrichlorosilane (UTS) SAM is assembled onto a Si substrate, and the terminal olefin groups of the UTS SAM are oxidized to carboxyl groups. Subsequently, a Cu-ligated MHDA multilayer is assembled via the sequential deposition of Cu2+ ions and MHDA molecules. The interface between the oxidized UTS SAM and Cu-ligated MHDA multilayer serves as a natural low force breakpoint for nanoshaving. We demonstrate that the resulting nanopatterns can function as a chemical resist to fabricate metal nanostructures. 
    more » « less
  3. N-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp 2 -hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain. Here we investigate the structure and geometry of a series of NHCs on Au(111) using high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. We find that the N-substituents on the NHC ring strongly affect the molecule–metal interaction and steer the orientation of molecules in the surface layer. In contrast to previous reports, our experimental and theoretical results provide unequivocal evidence that NHCs with N-methyl substituents bind to undercoordinated adatoms to form flat-lying complexes. In these SAMs, the donor–acceptor interaction between the NHC lone pair and the undercoordinated Au adatom is primarily responsible for the strong bonding of the molecules to the surface. NHCs with bulkier N-substituents prevent the formation of such complexes by forcing the molecules into an upright orientation. Our work provides unique insights into the bonding and geometry of NHC monolayers; more generally, it charts a clear path to manipulating the interaction between NHCs and metal surfaces using traditional coordination chemistry synthetic strategies. 
    more » « less
  4. Two series of lactone-terminated alkanethiol adsorbates with five- and six-membered lactone groups, γ-COCnSH and δ-COCnSH (n = 11, 12), were synthesized and employed to create nanoscale self-assembled monolayers (SAMs) on gold substrates to mimic the properties of commercially available poly(lactic-co-glycolic acid) (PLGA) and poly(glycolic acid) (PGA) surfaces. 1H and 13C nuclear magnetic resonance (NMR) were employed to characterize the adsorbate molecules. The thicknesses of the corresponding self-assembled monolayers (SAMs) were evaluated by ellipsometry. The conformational characteristics of the SAMs were analyzed using polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS), with a focus on the C-H antisymmetric stretching vibrations of the alkyl spacers. To evaluate the packing densities of the monolayers, X-ray photoelectron spectroscopy (XPS) measurements were performed. Separately, contact angle measurements provided insights into the wettability of the surfaces. Remarkably, the contact angle data across a broad range of probe liquids for the γ-COC11SH and γ-COC12SH SAMs were consistently similar to each other and to the contact angle values of the PLGA surface, rather than to PGA. This finding suggests that the lactone-terminated SAMs investigated in this study effectively mimic nanoscale polyester surfaces, enabling the exploration of interfacial properties of polyesters in the absence of swelling and/or surface reconstruction phenomena. 
    more » « less
  5. Atomic layer deposition (ALD) of ruthenium (Ru) is being investigated for next generation interconnects and conducting liners for copper metallization. However, integration of ALD Ru with diffusion barrier refractory metal nitrides, such as tantalum nitride (TaN), continues to be a challenge due to its slow nucleation rates. Here, we demonstrate that an ultraviolet-ozone (UV-O3) pretreatment of TaN leads to an oxidized surface that favorably alters the deposition characteristics of ALD Ru from islandlike to layer-by-layer growth. The film morphology and properties are evaluated via spectroscopic ellipsometry, atomic force microscopy, electrical sheet resistance measurements, and thermoreflectance. We report a 1.83 nm continuous Ru film with a roughness of 0.19 nm and a sheet resistance of 10.8 KΩ/□. The interface chemistry between TaN and Ru is studied by x-ray photoelectron spectroscopy. It is shown that UV-O3 pretreatment, while oxidizing TaN, enhances Ru film nucleation and limits further oxidation of the underlying TaN during ALD. An oxygen “gettering” mechanism by TaN is proposed to explain reduced oxygen content in the Ru film and higher electrical conductivity compared to Ru deposited on native-TaN. This work provides a simple and effective approach using UV-O3 pretreatment for obtaining sub-2 nm, smooth, and conducting Ru films on TaN surfaces. 
    more » « less