skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation in Oceanographic Resistance of the World's Coastlines to Invasion by Species With Planktonic Dispersal
ABSTRACT For marine species with planktonic dispersal, invasion of open ocean coastlines is impaired by the physical adversity of ocean currents moving larvae downstream and offshore. The extent species are affected by physical adversity depends on interactions of the currents with larval life history traits such as planktonic duration, depth and seasonality. Ecologists have struggled to understand how these traits expose species to adverse ocean currents and affect their ability to persist when introduced to novel habitat. We use a high‐resolution global ocean model to isolate the role of ocean currents on the persistence of a larval‐producing species introduced to every open coastline of the world. We find physical adversity to invasion varies globally by several orders of magnitude. Larval duration is the most influential life history trait because increased duration prolongs species' exposure to ocean currents. Furthermore, variation of physical adversity with life history elucidates how trade‐offs between dispersal traits vary globally.  more » « less
Award ID(s):
1947884 1947954
PAR ID:
10575894
Author(s) / Creator(s):
;
Publisher / Repository:
Ecology Letters
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
9
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dispersal emerges as an outcome of organismal traits and external forcings. However, it remains unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying traits. This question is particularly compelling in coastal marine systems, where dispersal is tied to development and reproduction and where directional currents bias larval dispersal downstream, causing selection for retention. We modeled the dynamics of a metapopulation along a finite coastline using an integral projection model and adaptive dynamics to understand how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and adult (spawning frequency) life history traits, which indirectly shape the evolution of marine dispersal kernels. Selection induced by alongshore currents favors the release of larvae over multiple time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained in marine life cycles in situations where they were previously predicted to be selected against. Two evolutionarily stable strategies emerged: one with a long pelagic larval duration and many spawning events, resulting in a dispersal kernel with a larger mean and variance, and another with a short pelagic larval duration and few spawning events, resulting in a dispersal kernel with a smaller mean and variance. Our theory shows how coastal ocean flows are important agents of selection that can generate multiple, often co-occurring evolutionary outcomes for marine life history traits that affect dispersal. 
    more » « less
  2. The increase in genetic distance between marine individuals or populations with increasing distance has often been assumed to be influenced by dispersal distance. In turn, dispersal distance has often been assumed to correlate strongly with pelagic larval duration (PLD). We examined the consistency of these assumptions in species with long planktonic durations. Reviewing multiple marine species, Selkoe & Toonen (2011; Mar Ecol Prog Ser 436:291-305) demonstrated significant fit of a species’ PLD with metrics of genetic distance between sampling sites. However, for long dispersers (PLD >10 d) whose dispersal is more influenced by ocean currents, the fit of PLD and genetic connectivity metrics was not significant. We tested if using realistic ocean currents to determine simulated dispersal distances would produce an improved proxy for larval dispersal that correlates more strongly with genetic connectivity metrics. We estimated the dispersal distance of propagules for locations in the genetic studies compiled by Selkoe and Toonen with a global ocean model (Mercator, 1/12° resolution). The model-derived estimates of dispersal distance did not correlate better than PLD against the genetic diversity metrics globalFSTkm-1and isolation-by-distance (IBD) slope. We explored 2 explanations: (1) our ocean circulation-based dispersal distance estimates are too simple to produce biologically meaningful improvement over PLD, and (2) IBD slope is not a powerful predictor of variation in dispersal distance between species with long PLD. Exploring these explanations suggests directions for future research which will enable better quantitative understanding of genetic diversity and its spatial distribution in coastal marine organisms. 
    more » « less
  3. PremiseWe tested 25 classic and novel hypotheses regarding trait–origin, trait–trait, and trait–environment relationships to account for flora‐wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA. MethodsWe assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models. ResultsIntroduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats. ConclusionsThese findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora‐wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions. 
    more » « less
  4. Abstract AimInvasive species are ideal systems for testing geographical differences in performance traits and measuring evolutionary responses as a species spreads across divergent climates and habitats. The European gypsy moth,Lymantria dispar disparL. (Lepidoptera: Erebidae), is a generalist forest defoliator introduced to Medford, Massachusetts, USA in 1869. The invasion front extends from Minnesota to North Carolina and the ability of this species to adapt to local climate may contribute to its continuing spread. We evaluated the performance of populations along the climatic gradient of the invasion front to test for a relationship between climate and ecologically important performance traits. LocationEastern United States of America TaxonLymantria dispar disparL. (Lepidoptera: Erebidae) MethodsInsects from 14 populations across the US invasion front and interior of the invasive range were reared from hatch to adult emergence in six constant temperature treatments. The responses of survival, pupal mass and larval development time were analysed as a function of source climate (annual mean normal temperature), rearing temperature and their interaction using multiple polynomial regression. ResultsWith the exception of female development time, there were no significant interactions between source climate and rearing temperature, indicating little divergence in the shape of thermal reaction norms among populations. Source population and rearing temperature were significant predictors of survival and pupal mass. Independent of rearing temperature, populations from warmer climates had lower survival than those from colder climates, but attained larger body size despite similar development times. Larval development time was dependent on rearing temperature, but there were not consistent relationships with source climate. Main ConclusionsThermal adaptation can be an important factor shaping the spread of invasive species, particularly in the context of climate change. Our results suggest thatL. d. disparis highly plastic, but has undergone climate‐related adaptation in thermal performance and life‐history traits as it spread across North America. 
    more » « less
  5. Climate change is shifting the phenological timing, duration, and temporal overlap of interacting species in natural communities, reshaping temporal interaction networks worldwide. Despite much recent progress in documenting these phenological shifts, little is known about how the phenologies of species interactions are tracked across different life history stages. Here we analyze four key phenological traits and the pairwise interaction potential of nine amphibian species for the adult (calling/breeding) and subsequent larval (tadpole) stage at eight different sites over six years. We found few strong correlations among phenological traits within species, but the strength of these correlations varied across species. As a consequence, phenological trait combinations of both stages varied substantially across species without clear signs of multidimensional clustering, indicating a distinct and diverse range of species‐specific phenological strategies. Despite this considerable variation in the phenologies across species, the temporal overlap between species was largely preserved through the two life history stages. Further, we also detected significant correlations among the duration and temporal overlap of interactions with other species across stages in five species, demonstrating that temporal patterns of species interactions are mirrored across life history stages. For these species, these results indicate a strong tracking of phenologies and species interactions across life history stages even in species with complex life cycles where stages occupy completely different environments. This suggests that phenological shifts in one stage can impact the temporal dynamics and structure of interaction networks across developmental stages. 
    more » « less