Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract High‐tide flooding—minor, disruptive coastal inundation—is expected to become more frequent as sea levels rise. However, quantifying just how quickly high‐tide flooding rates are changing, and whether some places experience more high‐tide flooding than others, is challenging. To quantify trends in high‐tide flooding from tide‐gauge observations, flood thresholds—elevations above which flooding begins—must be specified. Past studies of high‐tide flooding in the United States have used different data sets and approaches for specifying flood thresholds, only some of which directly relate to coastal impacts, which has lead to sometimes conflicting and ambiguous results. Here we present a novel method for quantifying, with uncertainty, high‐tide flooding thresholds along the United States coast based on sparsely available impact‐based flood thresholds. We use those newly modeled thresholds to make an updated assessment of changes in high‐tide flooding across the United States over the past few decades. From 1990–2000 to 2010–2020, high‐tide flooding rates almost certainly (probability ) increased along the United States East Coast, Gulf Coast, California, and Pacific Islands, while they very likely decreased along Alaska during that time; significant changes in high‐tide flooding rates between the two decades were not detected in Oregon, Washington, and the Caribbean. Averaging spatially, we find that high‐tide flooding rates probably more than doubled nationally between 1990–2000 and 2010–2020. Our approach lays a foundation for future studies to more accurately model high‐tide flood thresholds and trends along the global coastline.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract Compound floods are often thought of as large, infrequent floods during which extremes of coastal sea level and/or river flow combine with each other or additional factors (e.g., tides and rainfall) to induce major flooding. However, little is known about the potentially compound nature of more frequent, lower‐level floods. Here, we introduce the term “compound minor floods” to define minor floods composed of two or more water‐level sources. We use the Delaware River Estuary as a case study to investigate the prevalence and composition of these minor compound floods along the extent of a tidal river. We apply multiple linear regression to a 22‐year time series of coastal water levels and river discharge to establish the contributions of tides, nontidal open‐ocean effects, and river discharge to minor flood events at eight locations along the tidal Delaware River. We find that most minor flood events are compound in nature, requiring at least two components (e.g., tides and river discharge) to initiate flooding. We identify spatial structure in the relative importance of oceanographic and riverine contributions to minor flooding along the tidal reach of the estuary. These results suggest that incorporating fluvial components into minor flooding assessments is important to fully characterize flood risk along tidal rivers and estuaries.more » « less
- 
            Abstract Sea‐level change threatens the U.S. East Coast. Thus, it is important to understand the underlying causes, including ocean dynamics. Most past studies emphasized links between coastal sea level and local atmospheric variability or large‐scale circulation and climate, but possible relationships with local ocean currents over the shelf and slope remain largely unexplored. Here we use 7 years of in situ velocity and sea‐level data to quantify the relationship between northeastern U.S. coastal sea level and variable Shelfbreak Jet transport south of Nantucket Island. At timescales of 1–15 days, southern New England coastal sea level and transport vary in anti‐phase, with magnitude‐squared coherences of ∼0.5 and admittance amplitudes of ∼0.3 m Sv−1. These results are consistent with a dominant geostrophic balance between along‐shelf transport and coastal sea level, corroborating a hypothesis made decades ago that was not tested due to the lack of transport data.more » « less
- 
            Abstract The Gulf Stream is a vital limb of the North Atlantic circulation that influences regional climate, sea level, and hurricane activity. Given the Gulf Stream's relevance to weather and climate, many studies have attempted to estimate trends in its volumetric transport from various data sets, but results have been inconclusive, and no consensus has emerged whether it is weakening with climate change. Here we use Bayesian analysis to jointly assimilate multiple observational data sets from the Florida Straits to quantify uncertainty and change in Gulf Stream volume transport since 1982. We find with virtual certainty (probabilityP > 99%) that Gulf Stream volume transport through the Florida Straits declined by 1.2 ± 1.0 Sv in the past 40 years (95% credible interval). This significant trend has emerged from the data set only over the past ten years, the first unequivocal evidence for a recent multidecadal decline in this climate‐relevant component of ocean circulation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
