skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Improved Lower Bound for Matroid Intersection Prophet Inequalities
We consider prophet inequalities subject to feasibility constraints that are the intersection of q matroids. The best-known algorithms achieve a Θ(q)-approximation, even when restricted to instances that are the intersection of q partition matroids, and with i.i.d. Bernoulli random variables [José R. Correa et al., 2022; Moran Feldman et al., 2016; Marek Adamczyk and Michal Wlodarczyk, 2018]. The previous best-known lower bound is Θ(√q) due to a simple construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] (which uses i.i.d. Bernoulli random variables, and writes the construction as the intersection of partition matroids). We establish an improved lower bound of q^{1/2+Ω(1/log log q)} by writing the construction of [Robert Kleinberg and S. Matthew Weinberg, 2012] as the intersection of asymptotically fewer partition matroids. We accomplish this via an improved upper bound on the product dimension of a graph with p^p disjoint cliques of size p, using recent techniques developed in [Noga Alon and Ryan Alweiss, 2020].  more » « less
Award ID(s):
1942497
PAR ID:
10576119
Author(s) / Creator(s):
; ;
Editor(s):
Tauman_Kalai, Yael
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
251
ISSN:
1868-8969
ISBN:
978-3-95977-263-1
Page Range / eLocation ID:
251-251
Subject(s) / Keyword(s):
Prophet Inequalities Intersection of Matroids Mathematics of computing → Discrete mathematics
Format(s):
Medium: X Size: 20 pages; 854600 bytes Other: application/pdf
Size(s):
20 pages 854600 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Guruswami, Venkatesan (Ed.)
    We provide a simple (1-O(1/(√{k)}))-selectable Online Contention Resolution Scheme for k-uniform matroids against a fixed-order adversary. If A_i and G_i denote the set of selected elements and the set of realized active elements among the first i (respectively), our algorithm selects with probability 1-1/(√{k)} any active element i such that |A_{i-1}| + 1 ≤ (1-1/(√{k)})⋅ 𝔼[|G_i|]+√k. This implies a (1-O(1/(√{k)})) prophet inequality against fixed-order adversaries for k-uniform matroids that is considerably simpler than previous algorithms [Alaei, 2014; Azar et al., 2014; Jiang et al., 2022]. We also prove that no OCRS can be (1-Ω(√{(log k)/k}))-selectable for k-uniform matroids against an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that selects every active element with probability 1-Θ(√{(log k)/k}) [Hajiaghayi et al., 2007]. 
    more » « less
  2. We consider two versions of the (stochastic) budgeted Multi-Armed Bandit problem. The first one was introduced by Tran-Thanh et al. (AAAI, 2012): Pulling each arm incurs a fixed deterministic cost and yields a random reward i.i.d. sampled from an unknown distribution (prior free). We have a global budget B and aim to devise a strategy to maximize the expected total reward. The second one was introduced by Ding et al. (AAAI, 2013): It has the same setting as before except costs of each arm are i.i.d. samples from an unknown distribution (and independent from its rewards). We propose a new budget-based regret-analysis framework and design two simple algorithms to illustrate the power of our framework. Our regret bounds for both problems not only match the optimal bound of O(ln B) but also significantly reduce the dependence on other input parameters (assumed constants), compared with the two studies of Tran-Thanh et al. (AAAI, 2012) and Ding et al. (AAAI, 2013) where both utilized a time-based framework. Extensive experimental results show the effectiveness and computation efficiency of our proposed algorithms and confirm our theoretical predictions. 
    more » « less
  3. null (Ed.)
    Given a mixture between two populations of coins, “positive” coins that each have unknown and potentially different—bias ≥ 1 + ∆ and “negative” coins with bias ≤ 2 − ∆, we consider the task of estimating the fraction ρ of positive coins to within additive error E. We achieve an upper and lower bound of Θ( ρ log 1 ) samples for a 1 −δ probability of success, where crucially, our lower bound applies to all fully-adaptive algorithms. Thus, our sample complexity bounds have tight dependence for every relevant problem parameter. A crucial component of our lower bound proof is a decomposition lemma (Lemma 5.2) showing how to assemble partially-adaptive bounds into a fully-adaptive bound, which may be of independent interest: though we invoke it for the special case of Bernoulli random variables (coins), it applies to general distributions. We present sim- ulation results to demonstrate the practical efficacy of our approach for realistic problem parameters for crowdsourcing applications, focusing on the “rare events” regime where ρ is small. The fine-grained adaptive flavor of both our algo- rithm and lower bound contrasts with much previous workin distributional testing and learning. 
    more » « less
  4. We study entropy flattening: Given a circuit C_X implicitly describing an n-bit source X (namely, X is the output of C_X on a uniform random input), construct another circuit C_Y describing a source Y such that (1) source Y is nearly flat (uniform on its support), and (2) the Shannon entropy of Y is monotonically related to that of X. The standard solution is to have C_Y evaluate C_X altogether Theta(n^2) times on independent inputs and concatenate the results (correctness follows from the asymptotic equipartition property). In this paper, we show that this is optimal among black-box constructions: Any circuit C_Y for entropy flattening that repeatedly queries C_X as an oracle requires Omega(n^2) queries. Entropy flattening is a component used in the constructions of pseudorandom generators and other cryptographic primitives from one-way functions [Johan Håstad et al., 1999; John Rompel, 1990; Thomas Holenstein, 2006; Iftach Haitner et al., 2006; Iftach Haitner et al., 2009; Iftach Haitner et al., 2013; Iftach Haitner et al., 2010; Salil P. Vadhan and Colin Jia Zheng, 2012]. It is also used in reductions between problems complete for statistical zero-knowledge [Tatsuaki Okamoto, 2000; Amit Sahai and Salil P. Vadhan, 1997; Oded Goldreich et al., 1999; Vadhan, 1999]. The Theta(n^2) query complexity is often the main efficiency bottleneck. Our lower bound can be viewed as a step towards proving that the current best construction of pseudorandom generator from arbitrary one-way functions by Vadhan and Zheng (STOC 2012) has optimal efficiency. 
    more » « less
  5. We explicitly construct an extractor for two independent sources on n bits, each with min-entropy at least log^C n for a large enough constant C. Our extractor outputs one bit and has error n^{-\Omega(1)}. The best previous extractor, by Bourgain, required each source to have min-entropy .499n. A key ingredient in our construction is an explicit construction of a monotone, almost-balanced boolean function on n bits that is resilient to coalitions of size n^{1-delta}, for any delta>0. In fact, our construction is stronger in that it gives an explicit extractor for a generalization of non-oblivious bit-fixing sources on n bits, where some unknown n-q bits are chosen almost polylog(n)-wise independently, and the remaining q=n^{1-\delta} bits are chosen by an adversary as an arbitrary function of the n-q bits. The best previous construction, by Viola, achieved q=n^{1/2 - \delta}. Our explicit two-source extractor directly implies an explicit construction of a 2^{(log log N)^{O(1)}}-Ramsey graph over N vertices, improving bounds obtained by Barak et al. and matching independent work by Cohen. 
    more » « less