This paper considers a generalized version of the coin weighing problem with a spring scale that lies at the intersection of group testing and compressed sensing problems. Given a collection of n ≥ 2 coins of total weight d (for a known integer d), where the weight of each coin is an unknown integer in the range of {0, 1, ..., k} (for a known integer k ≥ 1), the goal is to determine the weight of each coin by weighing subsets of coins in a spring scale. The problem is to devise a weighing strategy that minimizes the average number of weighings over all possible weight configurations. For d = k = 1, an adaptive bisecting weighing strategy is known to be optimal. However, even the simplest non-trivial case of the problem, i.e., d = k = 2, is still open. For this case, we propose and analyze a simple and effective adaptive weighing strategy. Our analysis shows that the proposed strategy requires about 1.365log2n-0.5 weighings on average. As n grows unbounded, the proposed strategy, when compared to an optimal strategy within the commonly-used class of nested strategies, requires about 31.75% less number of weighings on average; and in comparison with the information-theoretic lower bound, it requires at most about 8.16% extra number of weighings on average. 
                        more » 
                        « less   
                    
                            
                            Optimal adaptive algorithms for estimating mixtures of unknown coins.
                        
                    
    
            Given a mixture between two populations of coins, “positive” coins that each have unknown and potentially different—bias ≥ 1 + ∆ and “negative” coins with bias ≤ 2 − ∆, we consider the task of estimating the fraction ρ of positive coins to within additive error E. We achieve an upper and lower bound of Θ( ρ log 1 ) samples for a 1 −δ probability of success, where crucially, our lower bound applies to all fully-adaptive algorithms. Thus, our sample complexity bounds have tight dependence for every relevant problem parameter. A crucial component of our lower bound proof is a decomposition lemma (Lemma 5.2) showing how to assemble partially-adaptive bounds into a fully-adaptive bound, which may be of independent interest: though we invoke it for the special case of Bernoulli random variables (coins), it applies to general distributions. We present sim- ulation results to demonstrate the practical efficacy of our approach for realistic problem parameters for crowdsourcing applications, focusing on the “rare events” regime where ρ is small. The fine-grained adaptive flavor of both our algo- rithm and lower bound contrasts with much previous workin distributional testing and learning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900460
- PAR ID:
- 10273447
- Date Published:
- Journal Name:
- Proceedings of the 2021 ACM- SIAM Symposium on Discrete Algorithms (SODA), pages 414–433.
- Volume:
- SIAM 2021
- Issue:
- 2021
- Page Range / eLocation ID:
- 414-433
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The noise sensitivity of a Boolean function f:{0,1}n→{0,1} is one of its fundamental properties. A function of a positive noise parameter δ, it is denoted as NSδ[f]. Here we study the algorithmic problem of approximating it for monotone f, such that NSδ[f]≥1/nC for constant C, and where δ satisfies 1/n≤δ≤1/2. For such f and δ, we give a randomized algorithm performing O(min(1,n√δlog1.5n)NSδ[f]poly(1ϵ)) queries and approximating NSδ[f] to within a multiplicative factor of (1±ϵ). Given the same constraints on f and δ, we also prove a lower bound of Ω(min(1,n√δ)NSδ[f]⋅nξ) on the query complexity of any algorithm that approximates NSδ[f] to within any constant factor, where ξ can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n. We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield previously unknown lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias.more » « less
- 
            Abstract In the synthetic geometric setting introduced by Kunzinger and Sämann, we present an analogue of Toponogov’s Globalisation Theorem which applies to Lorentzian length spaces with lower (timelike) curvature bounds. Our approach utilises a “cat’s cradle” construction akin to that which appears in several proofs in the metric setting. On the road to our main result, we also provide a lemma regarding the subdivision of triangles in spaces with a local lower curvature bound and a synthetic Lorentzian version of the Lebesgue Number Lemma. Several properties of time functions and the null distance on globally hyperbolic Lorentzian length spaces are also highlighted. We conclude by presenting several applications of our results, including versions of the Bonnet–Myers Theorem and the Splitting Theorem for Lorentzian length spaces with local lower curvature bounds, as well as discussion of stability of curvature bounds under Gromov–Hausdorff convergence.more » « less
- 
            Lysyanskaya, Anna; Handschuh, Helena (Ed.)We study the black-box function inversion problem, which is the problem of finding x[N] such that f(x)=y, given as input some challenge point y in the image of a function f:[N][N], using T oracle queries to f and preprocessed advice 01S depending on f. We prove a number of new results about this problem, as follows. 1. We show an algorithm that works for any T and S satisfying TS2maxST=(N3) . In the important setting when ST, this improves on the celebrated algorithm of Fiat and Naor [STOC, 1991], which requires TS3N3. E.g., Fiat and Naor's algorithm is only non-trivial for SN23 , while our algorithm gives a non-trivial tradeoff for any SN12 . (Our algorithm and analysis are quite simple. As a consequence of this, we also give a self-contained and simple proof of Fiat and Naor's original result, with certain optimizations left out for simplicity.) 2. We show a non-adaptive algorithm (i.e., an algorithm whose ith query xi is chosen based entirely on and y, and not on the f(x1)f(xi−1)) that works for any T and S satisfying S=(Nlog(NT)) giving the first non-trivial non-adaptive algorithm for this problem. E.g., setting T=Npolylog(N) gives S=(NloglogN). This answers a question due to Corrigan-Gibbs and Kogan [TCC, 2019], who asked whether it was possible for a non-adaptive algorithm to work with parameters T and S satisfying T+SlogNo(N) . We also observe that our non-adaptive algorithm is what we call a guess-and-check algorithm, that is, it is non-adaptive and its final output is always one of the oracle queries x1xT. For guess-and-check algorithms, we prove a matching lower bound, therefore completely characterizing the achievable parameters (ST) for this natural class of algorithms. (Corrigan-Gibbs and Kogan showed that any such lower bound for arbitrary non-adaptive algorithms would imply new circuit lower bounds.) 3. We show equivalence between function inversion and a natural decision version of the problem in both the worst case and the average case, and similarly for functions f:[N][M] with different ranges. All of the above results are most naturally described in a model with shared randomness (i.e., random coins shared between the preprocessing algorithm and the online algorithm). However, as an additional contribution, we show (using a technique from communication complexity due to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness into one that does not.more » « less
- 
            Fawzi, Omar; Walter, Michael (Ed.)The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string x ∈ {0, 1}ⁿ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of x. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of Ω(n/log² n) for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    