Abstract Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption.
more »
« less
Additive Manufacturing of Magnetic Materials for Energy, Environment, Healthcare, and Industry Applications
Abstract Recent advancements in additive manufacturing (AM) techniques have significantly expanded the potential applications of magnetic materials and devices. This review summarizes various AM methods, including ink‐based and ink‐free processes, and their use in fabricating complex magnetic structures with specific properties tailored for different fields. Key applications discussed include energy‐harvesting devices enhanced with magnetic nanoparticles, water decontamination through magnetically guided microswimmers, and magnetic soft composites in robotics and medical devices. In addition, the integration of AM in producing wearable and flexible magnetic sensors is highlighted, demonstrating its transformative impact on human‐machine interactions. Furthermore, rare‐earth‐free magnets and electric motor designs enabled by AM techniques are also discussed. Despite material compatibility and scalability challenges, AM provides opportunities for creating multifunctional, sustainable devices with reduced waste. Future research should focus on optimizing these techniques for complex applications and large‐scale production, particularly in eco‐friendly and industrial settings.
more »
« less
- Award ID(s):
- 2418915
- PAR ID:
- 10576167
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 35
- Issue:
- 10
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Advanced manufacturing techniques such as Additive Manufacturing (AM) have grown rapidly in major industries such as aerospace, automotive, and biomedical device manufacturing. Biomedical industry has benefitted immensely from AM because of its flexibility in design and its rapid production cycle. Powder bed processes are the major production technique for metal-based AM implants. This paper serves as a comprehensive review on the research efforts being made using AM to develop new patient centered medical devices. This review focuses on AM of the most common metals for biomedical applications, Magnesium alloys, Cobalt-Chromium alloys, pure Titanium, Titanium alloys. Several different aspects are discussed including biocompatibility and osseointegration, application of specific metals in different types of implants, their advantages and disadvantages, mechanical properties in comparison to bone, and their production technologies. Regulatory and quality assurance hurdles that are facing new innovations made using AM are discussed.more » « less
-
Abstract This research advances the field of additive manufacturing (AM) of silicon carbide (SiC) ceramics by integrating spark plasma sintering (SPS) to enhance material density, mechanical strength, and thermal properties. Traditional AM techniques struggle to achieve the high‐density SiC required for demanding applications, such as aerospace engineering, where high thermal conductivity and mechanical strength are paramount. Our study addresses these challenges by incorporating SPS as a post‐processing step, achieving near‐theoretical maximum densities and significantly reducing porosity, thereby resulting in outstanding thermal conductivity in SiC ceramics. We developed a specialized SiC ink optimized for 3D printing, ensuring structural integrity after deposition through tailored rheological properties. The application of SPS facilitates rapid, uniform sintering, essential for attaining superior density, mechanical properties, and thermal performance. Our experimental results, confirmed through scanning electron microscopy analysis, demonstrate significant microstructural properties, mechanical strength, and thermal conductivity, showcasing the effectiveness of integrating SPS in AM processes. This innovative approach not only expands the capabilities of AM in producing complex, high‐density ceramic structures but also broadens the potential applications of SiC in demanding environments.more » « less
-
Abstract Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed.more » « less
An official website of the United States government
