Abstract BackgroundMacrophages are one of the most prevalent subsets of immune cells within the tumor microenvironment and perform a range of functions depending on the cytokines and chemokines released by surrounding cells and tissues. Recent research has revealed that macrophages can exhibit a spectrum of phenotypes, making them highly plastic due to their ability to alter their physiology in response to environmental cues. Recent advances in examining heterogeneous macrophage populations include optical metabolic imaging, such as fluorescence lifetime imaging (FLIM), and multiphoton microscopy. However, the method of detection for these systems is reliant upon the coenzymes NAD(P)H and FAD, which can be affected by factors other than cytoplasmic metabolic changes. In this study, we seek to validate these optical measures of metabolism by comparing optical results to more standard methods of evaluating cellular metabolism, such as extracellular flux assays and the presence of metabolic intermediates. MethodsHere, we used autofluorescence imaging of endogenous metabolic co-factors via multiphoton microscopy and FLIM in conjunction with oxygen consumption rate and extracellular acidification rate through Seahorse extracellular flux assays to detect changes in cellular metabolism in quiescent and classically activated macrophages in response to cytokine stimulation. ResultsBased on our Seahorse XFP flux analysis, M0 and M1 macrophages exhibit comparable trends in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Autofluorescence imaging of M0 and M1 macrophages was not only able to show acute changes in the optical redox ratio from pre-differentiation (0 hours) to 72 hours post-cytokine differentiation (M0: 0.320 to 0.258 and M1: 0.316 to 0.386), mean NADH lifetime (M0: 1.272 ns to 1.379 ns and M1: 1.265 ns to 1.206 ns), and A1/A2 ratio (M0: 3.452 to ~ 4 and M1: 3.537 to 4.529) but could also detect heterogeneity within each macrophage population. ConclusionsOverall, the findings of this study suggest that autofluorescence metabolic imaging could be a reliable technique for longitudinal tracking of immune cell metabolism during activation post-cytokine stimulation.
more »
« less
Scaffold-free development of multicellular tumor spheroids with spatial characterization of structure and metabolic radial profiles
Abstract PurposeIn vitroassays are essential for studying cellular biology, but traditional monolayer cultures fail to replicate the complex three-dimensional (3D) interactions of cells in living organisms. 3D culture systems offer a more accurate reflection of the cellular microenvironment. However, 3D cultures require robust and unique methods of characterization. MethodsThe goal of this study was to create a 3D spheroid model using cancer cells and macrophages, and to demonstrate a custom image analysis program to assess structural and metabolic changes across spheroid microregions. ResultsStructural characterization shows that cells at the necrotic core show high normalized fluorescence intensities of CD206 (M2 macrophages), cellular apoptosis (cleaved caspase-3, CC3), and hypoxia (HIF-1α and HIF-2α) compared to the proliferative edge, which shows high normalized fluorescence intensities of CD80 (M1 macrophages) and cellular proliferation (Ki67). Metabolic characterization was performed using multiphoton microscopy and fluorescence lifetime imaging (FLIM). Results show that the mean NADH lifetime at the necrotic core (1.011 ± 0.086 ns) was lower than that at the proliferative edge (1.105 ± 0.077 ns). The opposite trend is shown in the A1/A2 ratio (necrotic core: 4.864 ± 0.753; proliferative edge: 4.250 ± 0.432). ConclusionOverall, the results of this study show that 3D multicellular spheroid models can provide a reliable solution for studying tumor biology, allowing for the evaluation of discrete changes across all spheroid microregions.
more »
« less
- Award ID(s):
- 1751554
- PAR ID:
- 10576266
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- In vitro models
- Volume:
- 3
- Issue:
- 2-3
- ISSN:
- 2731-3441
- Page Range / eLocation ID:
- 91 to 108
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Amon, Cristina (Ed.)Abstract Multicellular spheroids have shown great promise in 3D biology. Many techniques exist to form spheroids, but how cells take mechanical advantage of native fibrous extracellular matrix (ECM) to form spheroids remains unknown. Here, we identify the role of fiber diameter, architecture, and cell contractility on spheroids’ spontaneous formation and growth in ECM-mimicking fiber networks. We show that matrix deformability revealed through force measurements on aligned fiber networks promotes spheroid formation independent of fiber diameter. At the same time, larger-diameter crosshatched networks of low deformability abrogate spheroid formation. Thus, designing fiber networks of varying diameters and architectures allows spatial patterning of spheroids and monolayers simultaneously. Forces quantified during spheroid formation revealed the contractile role of Rho-associated protein kinase in spheroid formation and maintenance. Interestingly, we observed spheroid–spheroid and multiple spheroid mergers initiated by cell exchanges to form cellular bridges connecting the two spheroids. Unexpectedly, we found large pericyte spheroids contract rhythmically. Transcriptomic analysis revealed striking changes in cell–cell, cell–matrix, and mechanosensing gene expression profiles concordant with spheroid assembly on fiber networks. Overall, we ascertained that contractility and network deformability work together to spontaneously form and pattern 3D spheroids, potentially connecting in vivo matrix biology with developmental, disease, and regenerative biology.more » « less
-
Abstract Extracellular vesicles (EVs) secreted by human brain cells have great potential as cell‐free therapies in various diseases, including stroke. However, because of the significant amount of EVs needed in preclinical and clinical trials, EV application is still challenging. Vertical‐Wheel Bioreactors (VWBRs) have designed features that allow for scaling up the generation of human forebrain spheroid EVs under low shear stress. In this study, EV secretion by human forebrain spheroids derived from induced pluripotent stem cells as 3D aggregates and on Synthemax II microcarriers in VWBRs were investigated with static aggregate culture as a control. The spheroids were characterized by metabolite and transcriptome analysis. The isolated EVs were characterized by nanoparticle tracking analysis, electron microscopy, and Western blot. The EV cargo was analyzed using proteomics and miRNA sequencing. The in vitro functional assays of an oxygen and glucose‐deprived stroke model were conducted. Proof of concept in vivo study was performed, too. Human forebrain spheroid differentiated on microcarriers showed a higher growth rate than 3D aggregates. Microcarrier culture had lower glucose consumption per million cells and lower glycolysis gene expression but higher EV biogenesis genes. EVs from the three culture conditions showed no differences in size, but the yields from high to low were microcarrier cultures, dynamic aggregates, and static aggregates. The cargo is enriched with proteins (proteomics) and miRNAs (miRNA‐seq), promoting axon guidance, reducing apoptosis, scavenging reactive oxygen species, and regulating immune responses. Human forebrain spheroid EVs demonstrated the ability to improve recovery in an in vitro stroke model and in vivo. Human forebrain spheroid differentiation in VWBR significantly increased the EV yields (up to 240–750 fold) and EV biogenesis compared to static differentiation due to the dynamic microenvironment and metabolism change. The biomanufactured EVs from VWBRs have exosomal characteristics and more therapeutic cargo and are functional in in vitro assays, which paves the way for future in vivo stroke studies.more » « less
-
Abstract Macrophages hold vital roles in immune defense, wound healing, and tissue homeostasis, and have the exquisite ability to sense and respond to dynamically changing cues in their microenvironment. Much of our understanding of their behavior has been derived from studies performed using in vitro culture systems, in which the cell environment can be precisely controlled. Recent advances in miniaturized culture platforms also offer the ability to recapitulate some features of the in vivo environment and analyze cellular responses at the single‐cell level. Since macrophages are sensitive to their surrounding environments, the specific conditions in both macro‐ and micro‐scale cultures likely contribute to observed responses. In this study, we investigate how the presence of neighboring cells influence macrophage activation following proinflammatory stimulation in both bulk and micro‐scale culture. We found that in bulk cultures, higher seeding density negatively regulated the average TNF‐α secretion from individual macrophages in response to inflammatory agonists, and this effect was partially caused by the reduced cell‐to‐media volume ratio. In contrast, studies conducted using microwells to isolate single cells and groups of cells revealed that increasing numbers of cells positively influences their inflammatory activation, suggesting that the absolute cell numbers in the system may be important. In addition, a single inflammatory cell enhanced the inflammatory state of a small group of cells. Overall, this work helps to better understand how variations of macroscopic and microscopic culture environments influence studies in macrophage biology and provides insight into how the presence of neighboring cells and the soluble environment influences macrophage activation.more » « less
-
Abstract Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular environment of the target tissue, while allowing for 3D tomography of porous scaffolds as well as their cell growth and proliferation characterization. This is particularly challenging for opaque scaffolds. Here we use graphene foam (GF) as a 3D porous biocompatible substrate which is scalable, reproduceable, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticle to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a three-dimensional environment. Most importantly, our staining protocols allows for direct imaging of cell growth and proliferation on opaque GF scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches which is not possible with standard fluorescence and electron microscopy techniques. Abstract Figuremore » « less
An official website of the United States government

