skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Tale of Two Comprehensions? Analyzing Student Programmer Attention during Code Summarization
Code summarization is the task of creating short, natural language descriptions of source code. It is an important part of code comprehension and a powerful method of documentation. Previous work has made progress in identifying where programmers focus in code as they write their own summaries (i.e., Writing). However, there is currently a gap in studying programmers’ attention as they read code with pre-written summaries (i.e., Reading). As a result, it is currently unknown how these two forms of code comprehension compare: Reading and Writing. Also, there is a limited understanding of programmer attention with respect to program semantics. We address these shortcomings with a human eye-tracking study (n= 27) comparing Reading and Writing. We examined programmers’ attention with respect to fine-grained program semantics, including their attention sequences (i.e., scan paths). We find distinctions in programmer attention across the comprehension tasks, similarities in reading patterns between them, and differences mediated by demographic factors. This can help guide code comprehension in both computer science education and automated code summarization. Furthermore, we mapped programmers’ gaze data onto the Abstract Syntax Tree to explore another representation of human attention. We find that visual behavior on this structure is not always consistent with that on source code.  more » « less
Award ID(s):
2211428 2211429
PAR ID:
10576277
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Software Engineering and Methodology
Volume:
33
Issue:
7
ISSN:
1049-331X
Page Range / eLocation ID:
1 to 37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language modelsurprisalas a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Usingmeaning‐preserving transformations, we produce equivalent alternatives to developer‐written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developerschooseto write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmersdoprefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences. 
    more » « less
  2. null (Ed.)
    Program comprehension is a vital skill in software development. This work investigates program comprehension by examining the eye movement of novice programmers as they gain programming experience over the duration of a Java course. Their eye movement behavior is compared to the eye movement of expert programmers. Eye movement studies of natural text show that word frequency and length influence eye movement duration and act as indicators of reading skill. The study uses an existing longitudinal eye tracking dataset with 20 novice and experienced readers of source code. The work investigates the acquisition of the effects of token frequency and token length in source code reading as an indication of program reading skill. The results show evidence of the frequency and length effects in reading source code and the acquisition of these effects by novices. These results are then leveraged in a machine learning model demonstrating how eye movement can be used to estimate programming proficiency and classify novices from experts with 72% accuracy. 
    more » « less
  3. Program comprehension is an important, but hard to measure cognitive process. This makes it difficult to provide suitable programming languages, tools, or coding conventions to support developers in their everyday work. Here, we explore whether functional magnetic resonance imaging (fMRI) is feasible for soundly measuring program comprehension. To this end, we observed 17 participants inside an fMRI scanner while they were comprehending source code. The results show a clear, distinct activation of five brain regions, which are related to working memory, attention, and language processing, which all fit well to our understanding of program comprehension. Furthermore, we found reduced activity in the default mode network, indicating the cognitive effort necessary for program comprehension. We also observed that familiarity with Java as underlying programming language reduced cognitive effort during program comprehension. To gain confidence in the results and the method, we replicated the study with 11 new participants and largely confirmed our findings. Our results encourage us and, hopefully, others to use fMRI to observe programmers and, in the long run, answer questions, such as: How should we train programmers? Can we train someone to become an excellent programmer? How effective are new languages and tools for program comprehension? 
    more » « less
  4. Neural code summarization leverages deep learning models to automatically generate brief natural language summaries of code snippets. The development of Transformer models has led to extensive use of attention during model design. While existing work has primarily and almost exclusively focused on static properties of source code and related structural representations like the Abstract Syntax Tree (AST), few studies have considered human attention — that is, where programmers focus while examining and comprehending code. In this paper, we develop a method for incorporating human attention into machine attention to enhance neural code summarization. To facilitate this incorporation and vindicate this hypothesis, we introduce EyeTrans, which consists of three steps: (1) we conduct an extensive eye-tracking human study to collect and pre-analyze data for model training, (2) we devise a data-centric approach to integrate human attention with machine attention in the Transformer architecture, and (3) we conduct comprehensive experiments on two code summarization tasks to demonstrate the effectiveness of incorporating human attention into Transformers. Integrating human attention leads to an improvement of up to 29.91% in Functional Summarization and up to 6.39% in General Code Summarization performance, demonstrating the substantial benefits of this combination. We further explore performance in terms of robustness and efficiency by creating challenging summarization scenarios in which EyeTrans exhibits interesting properties. We also visualize the attention map to depict the simplifying effect of machine attention in the Transformer by incorporating human attention. This work has the potential to propel AI research in software engineering by introducing more human-centered approaches and data. 
    more » « less
  5. Debugging is a vital and time-consuming process in software engineering. Recently, researchers have begun using neuroimaging to understand the cognitive bases of programming tasks by measuring patterns of neural activity. While exciting, prior studies have only examined small sub-steps in isolation, such as comprehending a method without writing any code or writing a method from scratch without reading any already-existing code. We propose a simple multi-stage debugging model in which programmers transition between Task Comprehension, Fault Localization, Code Editing, Compiling, and Output Comprehension activities. We conduct a human study of n=28 participants using a combination of functional near-infrared spectroscopy and standard coding measurements (e.g., time taken, tests passed, etc.). Critically, we find that our proposed debugging stages are both neurally and behaviorally distinct. To the best of our knowledge, this is the first neurally-justified cognitive model of debugging. At the same time, there is significant interest in understanding how programmers from different backgrounds, such as those grappling with challenges in English prose comprehension, are impacted by code features when debugging. We use our cognitive model of debugging to investigate the role of one such feature: identifier construction. Specifically, we investigate how features of identifier construction impact neural activity while debugging by participants with and without reading difficulties. While we find significant differences in cognitive load as a function of morphology and expertise, we do not find significant differences in end-to-end programming outcomes (e.g., time, correctness, etc.). This nuanced result suggests that prior findings on the cognitive importance of identifier naming in isolated sub-steps may not generalize to end-to-end debugging. Finally, in a result relevant to broadening participation in computing, we find no behavioral outcome differences for participants with reading difficulties. 
    more » « less