Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions.more » « less
-
Code summarization is the task of creating short, natural language descriptions of source code. It is an important part of code comprehension and a powerful method of documentation. Previous work has made progress in identifying where programmers focus in code as they write their own summaries (i.e., Writing). However, there is currently a gap in studying programmers’ attention as they read code with pre-written summaries (i.e., Reading). As a result, it is currently unknown how these two forms of code comprehension compare: Reading and Writing. Also, there is a limited understanding of programmer attention with respect to program semantics. We address these shortcomings with a human eye-tracking study (n= 27) comparing Reading and Writing. We examined programmers’ attention with respect to fine-grained program semantics, including their attention sequences (i.e., scan paths). We find distinctions in programmer attention across the comprehension tasks, similarities in reading patterns between them, and differences mediated by demographic factors. This can help guide code comprehension in both computer science education and automated code summarization. Furthermore, we mapped programmers’ gaze data onto the Abstract Syntax Tree to explore another representation of human attention. We find that visual behavior on this structure is not always consistent with that on source code.more » « less
An official website of the United States government

Full Text Available