Determinant maximization problem gives a general framework that models problems arising in as diverse fields as statistics [Puk06], convex geometry [Kha96], fair allocations [AGSS16], combinatorics [AGV18], spectral graph theory [NST19a], network design, and random processes [KT12]. In an instance of a determinant maximization problem, we are given a collection of vectors U = {v1, . . . , vn} ⊂ Rd , and a goal is to pick a subset S ⊆ U of given vectors to maximize the determinant of the matrix ∑i∈S vivi^T. Often, the set S of picked vectors must satisfy additional combinatorial constraints such as cardinality constraint (|S| ≤ k) or matroid constraint (S is a basis of a matroid defined on the vectors). In this paper, we give a polynomial-time deterministic algorithm that returns a r O(r)-approximation for any matroid of rank r ≤ d. This improves previous results that give e O(r^2)-approximation algorithms relying on e^O(r)-approximate estimation algorithms [NS16, AG17,AGV18, MNST20] for any r ≤ d. All previous results use convex relaxations and their relationship to stable polynomials and strongly log-concave polynomials. In contrast, our algorithm builds on combinatorial algorithms for matroid intersection, which iteratively improve any solution by finding an alternating negative cycle in the exchange graph defined by the matroids. While the det(.) function is not linear, we show that taking appropriate linear approximations at each iteration suffice to give the improved approximation algorithm.
more »
« less
Learning Partitions Using Rank Queries
We consider the problem of learning an unknown partition of an n element universe using rank queries. Such queries take as input a subset of the universe and return the number of parts of the partition it intersects. We give a simple O(n)-query, efficient, deterministic algorithm for this problem. We also generalize to give an O(n + klog r)-rank query algorithm for a general partition matroid where k is the number of parts and r is the rank of the matroid.
more »
« less
- PAR ID:
- 10576292
- Editor(s):
- Barman, Siddharth; Lasota, Sławomir
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 323
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-355-3
- Page Range / eLocation ID:
- 323-323
- Subject(s) / Keyword(s):
- Query Complexity Hypergraph Learning Matroids Theory of computation → Streaming, sublinear and near linear time algorithms
- Format(s):
- Medium: X Size: 14 pages; 861401 bytes Other: application/pdf
- Size(s):
- 14 pages 861401 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we study two geometric data structure problems in the special case when input objects or queries are fat rectangles. We show that in this case a significant improvement compared to the general case can be achieved. We describe data structures that answer two- and three-dimensional orthogonal range reporting queries in the case when the query range is a fat rectangle. Our two-dimensional data structure uses O(n) words and supports queries in O(loglog U + k) time, where n is the number of points in the data structure, U is the size of the universe and k is the number of points in the query range. Our three-dimensional data structure needs O(n log^ε U) words of space and answers queries in O(loglog U + k) time. We also consider the rectangle stabbing problem on a set of three-dimensional fat rectangles. Our data structure uses O(n) space and answers stabbing queries in O(log U loglog U + k) time.more » « less
-
We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $$1-1/e-\epsilon$$ approximation for monotone functions and a $$1/e-\epsilon$$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $$O(\log^2{n}/\epsilon^3)$$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $$1/e-\epsilon$$ approximation using $$O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $$1-1/e-\epsilon$$ approximation in $$O(\log(n/\epsilon)\log(m)/\epsilon^2)$$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function.more » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)We consider variants of the classic Multiway Cut problem. Multiway Cut asks to partition a graph G into k parts so as to separate k given terminals. Recently, Chandrasekaran and Wang (ESA 2021) introduced l_p-norm Multiway Cut, a generalization of the problem, in which the goal is to minimize the l_p norm of the edge boundaries of k parts. We provide an O(log^{1/2} n log^{1/2 + 1/p} k) approximation algorithm for this problem, improving upon the approximation guarantee of O(log^{3/2} n log^{1/2} k) due to Chandrasekaran and Wang. We also introduce and study Norm Multiway Cut, a further generalization of Multiway Cut. We assume that we are given access to an oracle, which answers certain queries about the norm. We present an O(log^{1/2} n log^{7/2} k) approximation algorithm with a weaker oracle and an O(log^{1/2} n log^{5/2} k) approximation algorithm with a stronger oracle. Additionally, we show that without any oracle access, there is no n^{1/4-ε} approximation algorithm for every ε > 0 assuming the Hypergraph Dense-vs-Random Conjecture.more » « less
-
We give query-efficient algorithms for the global min-cut and the s-t cut problem in unweighted, undirected graphs. Our oracle model is inspired by the submodular function minimization problem: on query $$S \subset V$$, the oracle returns the size of the cut between $$S$$ and $$V \setminus S$$. We provide algorithms computing an exact minimum $$s$$-$$t$$ cut in $$G$$ with $$\tilde{O}(n^{5/3})$$ queries, and computing an exact global minimum cut of $$G$$ with only $$\tilde{O}(n)$$ queries (while learning the graph requires $$\tilde{\Theta}(n^2)$$ queries).more » « less
An official website of the United States government

