There is increasing evidence that climate change will lead to greater and more frequent extreme weather events, thus underscoring the importance of effectively communicating risks of record storm surges in coastal communities. This article reviews why risk communication often fails to convey the nature and risk of storm surge among the public and highlights the limitations of conventional (two-dimensional) storm surge flood maps. The research explores the potential of dynamic street-level, augmented scenes to increase the tangibility of these risks and foster a greater sense of agency among the public. The study focused on Sunset Park, a coastal community in southwest Brooklyn that is vulnerable to storm surges and flooding. Two different representations of flooding corresponding to a category three hurricane scenario were prepared: (1) a conventional two-dimensional flood map (“2D” control group) and (2) a, dynamic, street view simulation (“3D”test group). The street view simulations were found to be (1) more effective in conveying the magnitude of flooding and evacuation challenges, (2) easier to use for judging flood water depth (even without a flood depth legend), (3) capable of generating stronger emotional responses, and (4) perceived as more authoritative in nature
more »
« less
This content will become publicly available on February 1, 2026
Low-Cost, LiDAR-Based, Dynamic, Flood Risk Communication Viewer
This paper proposes a flood risk visualization method that is (1) readily transferable (2) hyperlocal, (3) computationally inexpensive, and (4) geometrically accurate. This proposal is for risk communication, to provide high-resolution, three-dimensional flood visualization at the sub-meter level. The method couples a laser scanning point cloud with algorithms that produce textured floodwaters, achieved through compounding multiple sine functions in a graphics shader. This hyper-local approach to visualization is enhanced by the ability to portray changes in (i) watercolor, (ii) texture, and (iii) motion (including dynamic heights) for various flood prediction scenarios. Through decoupling physics-based predictions from the visualization, a dynamic, flood risk viewer was produced with modest processing resources involving only a single, quad-core processor with a frequency around 4.30 GHz and with no graphics card. The system offers several major advantages. (1) The approach enables its use on a browser or with inexpensive, virtual reality hardware and, thus, promotes local dissemination for flood risk communication, planning, and mitigation. (2) The approach can be used for any scenario where water interfaces with the built environment, including inside of pipes. (3) When tested for a coastal inundation scenario from a hurricane, 92% of the neighborhood participants found it to be more effective in communicating flood risk than traditional 2D mapping flood warnings provided by governmental authorities.
more »
« less
- Award ID(s):
- 1826134
- PAR ID:
- 10576368
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 592
- Subject(s) / Keyword(s):
- Flooding risk communication 3D augmented reality
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The lack of community-relevant flood informational resources and tools often results in inadequate and divergent understandings of flood risk and can impede communities' ability to function cohesively in the face of increasing flood threats. The current study reports on a set of workshops that the authors conducted with various groups (citizens, city engineers and planners, realtors and builders, and media representatives) within a flood prone community to evaluate how novel hydroinformatic tools that include hydrodynamic modeling, geospatial visualization, and socioeconomic analysis can enhance understanding of flood risk and engagement in flood risk mitigation among diverse community members. The workshops were designed to help identify stakeholder preferences regarding key functionality needed for integrated hydroinformatic technologies and socioeconomic analyses for flood risk reduction. Workshop participants were asked to use and comment on examples of prototype flood risk informational tools, such as: (1) flood damage estimation tool, (2) drivability and emergency accessibility tool, and (3) community-scale social and economic metrics tool. Data gathered from workshops were analyzed using qualitative analysis based on a grounded-theory approach. Data were coded by hand based on themes identified by the research team and incorporated deviant case analysis to ensure minority opinions was represented. The study results are focused on the following main themes and how flood tools can address them: (1) improving the understanding of flood risk and engagement in flood risk mitigation, (2) reducing the gap between individual and community risk, (3) challenges in communicating flood risk information, (4) enhancing relevance to and engagement of the community, and (5) enabling actionable information. Our research demonstrates the need for community-anchored tools and technologies that can illustrate local context, include local historical and simulated events at multiple levels of community impact, enable analyses by flood professionals while also providing simplified tools of use by citizens, and allow individuals to expand their knowledge beyond their homes, businesses, and places of work.more » « less
-
Disasters, including floods, have increased in intensity over recent decades due to climate change and urbanization. Some local governments have attempted to engage communities in resilience efforts, referred to as Community-Based Disaster Resilience Management (CBDRM). However, it is unclear to what extent governments can effectively involve local communities in flood management plans, and how much flood management is perceived to be a “shared responsibility,” especially in low-income and minority areas. One city attempting to engage low-income and minority communities is Houston, Texas, which provides an opportunity to study how these efforts play out in the community in real time. Specifically, in this study, we examine Kashmere Gardens, a target neighborhood of the Houston initiative. We used a purposive and snowball sampling method and a grounded theory methodological approach to conduct qualitative in-depth interviews with 22 Kashmere Gardens residents. From this process, we found several themes, including affordability and convenience, neglect and distrust toward government, a lack of awareness concerning government flood management plans, and a sense of personal efficacy in the face of feelings of government neglect. The results of this study suggest that clearer communication from the city and more direct engagement with the community through on the ground programming may be necessary to develop better community trust and partnership in high flood risk areas. In terms of policy, utilizing funds to organize transportation or place meetings physically in the neighborhood, and employing more community organizers from within the community who have local knowledge, may foster better engagement to develop trust.more » « less
-
Abstract. Compound flooding, caused by the sequence and/or co-occurrence of flood drivers (i.e., river discharge and elevated sea level), can lead to devastating consequences for society. Weak and insufficient progress toward sustainable development and disaster risk reduction is likely to exacerbate the catastrophic impacts of these events on vulnerable communities. For this reason, it is indispensable to develop new perspectives on evaluating compound-flooding dependence and communicating the associated hazards to meet UN Sustainable Development Goals (SDGs) related to climate action, sustainable cities, and sustainable coastal communities. The first step in examining bivariate dependence is to plot the data in the variable space, i.e., visualizing a scatterplot, where each axis represents a variable of interest, and then computing a form of correlation between them. This paper introduces the Angles method, based on Euclidean geometry of the so-called “subject space”, as a complementary visualization approach specifically designed for communicating the dependence structure of compound-flooding drivers to diverse end-users. Here, we evaluate, for the first time, the utility of this geometric space in computing and visualizing the dependence structure of compound-flooding drivers. To assess the effectiveness of this method as a hazard communication tool, we conducted a survey with a diverse group of end-users, including academic and non-academic respondents. The survey results provide insights into the perceptions regarding the applicability of the Angles method and highlight its potential as an intuitive alternative to scatterplots in depicting the evolution of dependence in the non-stationary environment. This study emphasizes the importance of innovative visualization techniques in bridging the gap between scientific insights and practical applications, supporting more effective compound flood hazard communication.more » « less
-
Compound flooding, caused by the sequence/co-occurrence of flood drivers (i.e. river discharge and elevated sea level ) can lead to devastating consequences for society. Weak and insufficient progress toward sustainable development and disaster risk reduction are likely to exacerbate the catastrophic impacts of these events on vulnerable communities. For this reason, it is indispensable to develop new perspectives on evaluating compound flooding dependence and communicating the associated risks to meet UN Sustainable Development Goals (SDGs) related to climate action, sustainable cities, and sustainable coastal communities. An indispensable first step for studies examining the dependence between these bivariate extremes is plotting the data in the variable space, i.e., visualizing a scatterplot, where each axis represents a variable of interest, then computing a form of correlation between them. This paper introduces the Angles method, based on Euclidean geometry of the so-called “subject space,” for visualizing the dependence structure of compound flooding drivers. Here, we evaluate, for the first time, the utility of this geometric space in computing and visualizing the dependence structure of compound flooding drivers. To assess the effectiveness of this method as a risk communication tool, we conducted a survey with a diverse group of end-users, including academic and non-academic respondents. The survey results provide insights into the perceptions of applicability of the Angles method and highlight its potential as an intuitive alternative to scatterplots in depicting the evolution of dependence in the non-stationary environment. This study emphasizes the importance of innovative visualization techniques in bridging the gap between scientific insights and practical applications, supporting more effective compound flood hazard communication in a warming climate.more » « less
An official website of the United States government
