This review focuses on alkynyl Prins and alkynyl aza-Prins cyclization processes, which involve intramolecular coupling of an alkyne with either an oxocarbenium or iminium electrophile. The oxocarbenium or iminium species can be generated through condensation- or elimination-type processes, to achieve an overall bimolecular annulation that enables the synthesis of both oxygen- and nitrogen-containing saturated heterocycles with different ring sizes and substitution patterns. Also discussed are cascade processes in which alkynyl Prins heterocyclic adducts react to trigger subsequent pericyclic reactions, including [4+2] cycloadditions and Nazarov electrocyclizations, to rapidly construct complex small molecules. Finally, examples of the use of alkynyl Prins and alkynyl aza-Prins reactions in the synthesis of natural products are described. The review covers the literature through the end of 2019. 1 Introduction 1.1 Alkyne-Carbonyl Coupling Pathways 1.2 Coupling/Cyclization Cascades Using the Alkynyl Prins Reaction 2 Alkynyl Prins Annulation (Oxocarbenium Electrophiles) 2.1 Early Work 2.2 Halide as Terminal Nucleophile 2.3 Oxygen as Terminal Nucleophile 2.4 Arene as Terminal Nucleophile (Intermolecular) 2.5 Arene Terminal Nucleophile (Intramolecular) 2.6 Cyclizations Terminated by Elimination 3 Synthetic Utility of Alkynyl Prins Annulation 3.1 Alkynyl Prins-Mediated Synthesis of Dienes for a [4+2] Cyclo- addition-Oxidation Sequence 3.2 Alkynyl Prins Cyclization Adducts as Nazarov Cyclization Precursors 3.3 Alkynyl Prins Cyclization in Natural Product Synthesis 4 Alkynyl Aza-Prins Annulation 4.1 Iminium Electrophiles 4.2 Activated Iminium Electrophiles 5 Alkynyl Aza-Prins Cyclizations in Natural Product Synthesis 6 Summary and Outlook
more »
« less
One‐Pot Transition‐Metal‐Free Synthesis of Alkynyl Amides
Abstract Alkynyl amides play crucial roles in organic synthesis in the production of bioactive compounds and valuable heterocycles. Despite numerous studies on their synthesis, challenges persist due to the necessity of harsh or hazardous conditions and the use of costly or unstable reagents. Herein, we present a one‐pot method for the synthesis of all three bonds of the alkyne under transition‐metal‐free conditions. An important feature of this chemistry is the use of readily available feedstock chemicals, such as methyl esters and acetamides. This approach offers efficient access to a wide range of aryl and alkyl alkynyl amides and demonstrates excellent tolerance towards various functional groups in a sustainable and cost‐effective manner.
more »
« less
- Award ID(s):
- 2154593
- PAR ID:
- 10576439
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 3
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Amide chemistry has an essential role in the synthesis of high value molecules, such as pharmaceuticals, natural products, and fine chemicals. Over the past years, several examples of transamidation reactions have been reported. In general, transition-metal-based catalysts or harsh conditions are employed for these transformations due to unfavorable kinetics and thermodynamics of the process. Herein, we report a significant advance in this area and present the general method for transition-metal-free transamidation of amides and amidation of esters by highly selective acyl cleavage with non-nucleophilic amines at room temperature. In contrast to metal-catalyzed protocols, the method is operationally-simple, environmentally-friendly, and operates under exceedingly mild conditions. The practical value is highlighted by the synthesis of valuable amides in high yields. Considering the key role of amides in various branches of chemical science, we envision that this broadly applicable method will be of great interest in organic synthesis, drug discovery, and biochemistry.more » « less
-
Abstract Palladium hydrides are traditionally employed in hydrofunctionalization (i.e. monofunctionalization) of conjugated dienes and enynes, owning to its facile protic hydropalladation of electron‐rich (or neutral) unsaturated bonds. Herein, we report a mild PdH‐catalyzed difunctionalization of conjugated dienes and enynes. This protocol is enabled by the chemoselectivity switch of the initial hydropalladation step achieved by visible light enhancement of hydricity of PdH species. This method allows for cascade annulation of dienes and enynes with various easily available and abundant substrates, such as acrylic acids, acrylic amides, and Baylis–Hillman adducts, toward a wide range of alkenyl or alkynyl lactones, lactams, and tetrahydrofurans. This protocol also provides an easy access to complex spiro‐fused tricyclic frameworks.more » « less
-
Abstract We describe novel amine‐mediated transformation of alkynyl ketones and amides to generate 2‐methylene‐2H‐pyrans, substituted 3‐hydroxy‐9H‐fluoren‐9‐ones, and amine‐incorporated arenes. These cascade processes are initiated by conjugate addition of secondary amine followed by hydrolysis of the enamine/vinylogous amide intermediates. The product distribution is highly sensitive to the steric and electronic effects of the substituents on both the alkyne moieties, the tether structure connecting them, and the nature of the amine. Alkynyl amide participates in the Alder‐ene reaction favorably to generate more reactive allene amide that reacts with amine to generate amine‐incorporated arene products. These metal‐free cascade reactions are a useful synthetic method that can be exploited for the construction of various hetero‐ and carbocyclic systems.more » « less
-
Abstract Direct preparation of alkylated amide‐derivatives by cross‐coupling chemistry using sustainable protocols is challenging due to sensitivity of the amide functional group to reaction conditions. Herein, we report the synthesis of alkyl‐substituted amides by iron‐catalyzed C(sp2)−C(sp3) cross‐coupling of Grignard reagents with aryl chlorides. The products of these reactions are broadly used in the synthesis of pharmaceuticals, agrochemicals and other biologically‐active molecules. Furthermore, amides are used as versatile intermediates that can participate in the synthesis of valuable ketones and amines, providing access to motifs of broad synthetic interest. The reaction is characterized by its good substrate scope, tolerating a range of amide substitution, including sterically‐bulky, sensitive and readily modifiable amides. The reaction is compatible with challenging organometallics possessing β‐hydrogens, and proceeds under very mild, operationally‐simple conditions. Optimization of the catalyst system demonstrated the beneficial effect of O‐coordinating ligands on the cross‐coupling. The reaction was found to be fully chemoselective for the mono‐substitution at the less sterically‐hindered position. Mechanistic studies establish the order of reactivity and provide insight into the role of amide to control mono‐selectivity of the alkylation. The protocol provides the possibility for convenient access to alkyl‐amide structural building blocks using sustainable cross‐coupling conditions with high efficiency. magnified imagemore » « less
An official website of the United States government
