skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 11, 2026

Title: GeoDEN: A Visual Exploration Tool for Analyzing the Geographic Spread of Dengue Serotypes
Abstract Static maps and animations remain popular in spatial epidemiology of dengue, limiting the analytical depth and scope of visualizations. Over half of the global population live in dengue endemic regions. Understanding the spatiotemporal dynamics of the four closely related dengue serotypes, and their immunological interactions, remains a challenge at a global scale. To facilitate this understanding, we worked with dengue epidemiologists in a user‐centred design framework to create GeoDEN, an exploratory visualization tool that empowers experts to investigate spatiotemporal patterns in dengue serotype reports. The tool has several linked visualizations and filtering mechanisms, enabling analysis at a range of spatial and temporal scales. To identify successes and failures, we present both insight‐based and value‐driven evaluations. Our domain experts found GeoDEN valuable, verifying existing hypotheses and uncovering novel insights that warrant further investigation by the epidemiology community. The developed visual exploration approach can be adapted for exploring other epidemiology and disease incident datasets.  more » « less
Award ID(s):
2026962
PAR ID:
10576629
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
ISSN:
0167-7055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Christofferson, Rebecca C. (Ed.)
    Background The COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home. Methodology & principal findings We used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control. Conclusions & significance Our results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another. 
    more » « less
  2. Abstract BackgroundVector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance. MethodsTo better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas. ResultsModels based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks. ConclusionsHotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection. 
    more » « less
  3. Abstract ObjectiveThe COVID-19 pandemic emphasized the value of geospatial visual analytics for both epidemiologists and the general public. However, systems struggled to encode temporal and geospatial trends of multiple, potentially interacting variables, such as active cases, deaths, and vaccinations. We sought to ask (1) how epidemiologists interact with visual analytics tools, (2) how multiple, time-varying, geospatial variables can be conveyed in a unified view, and (3) how complex spatiotemporal encodings affect utility for both experts and non-experts. Materials and MethodsWe propose encoding variables with animated, concentric, hollow circles, allowing multiple variables via color encoding and avoiding occlusion problems, and we implement this method in a browser-based tool called CoronaViz. We conduct task-based evaluations with non-experts, as well as in-depth interviews and observational sessions with epidemiologists, covering a range of tools and encodings. ResultsSessions with epidemiologists confirmed the importance of multivariate, spatiotemporal queries and the utility of CoronaViz for answering them, while providing direction for future development. Non-experts tasked with performing spatiotemporal queries unanimously preferred animation to multi-view dashboards. DiscussionWe find that conveying complex, multivariate data necessarily involves trade-offs. Yet, our studies suggest the importance of complementary visualization strategies, with our animated multivariate spatiotemporal encoding filling important needs for exploration and presentation. ConclusionCoronaViz’s unique ability to convey multiple, time-varying, geospatial variables makes it both a valuable addition to interactive COVID-19 dashboards and a platform for empowering experts and the public during future disease outbreaks. CoronaViz is open-source and a live instance is freely hosted at http://coronaviz.umiacs.io. 
    more » « less
  4. Abstract The spread of dengue and other arboviruses constitutes an expanding global health threat. The extensive heterogeneity in population distribution and potential complexity of movement in megacities of low and middle-income countries challenges predictive modeling, even as its importance to disease spread is clearer than ever. Using surveillance data at fine resolution following the emergence of the DENV4 dengue serotype in Rio de Janeiro, we document a pattern in the size of successive epidemics that is invariant to the scale of spatial aggregation. This pattern emerges from the combined effect of herd immunity and seasonal transmission, and is strongly driven by variation in population density at sub-kilometer scales. It is apparent only when the landscape is stratified by population density and not by spatial proximity as has been common practice. Models that exploit this emergent simplicity should afford improved predictions of the local size of successive epidemic waves. 
    more » « less
  5. Spatiotemporal data analysis with massive zeros is widely used in many areas such as epidemiology and public health. We use a Bayesian framework to fit zero-inflated negative binomial models and employ a set of latent variables from Pólya-Gamma distributions to derive an efficient Gibbs sampler. The proposed model accommodates varying spatial and temporal random effects through Gaussian process priors, which have both the simplicity and flexibility in modeling nonlinear relationships through a covariance function. To conquer the computation bottleneck that GPs may suffer when the sample size is large, we adopt the nearest-neighbor GP approach that approximates the covariance matrix using local experts. For the simulation study, we adopt multiple settings with varying sizes of spatial locations to evaluate the performance of the proposed model such as spatial and temporal random effects estimation and compare the result to other methods. We also apply the proposed model to the COVID-19 death counts in the state of Florida, USA from 3/25/2020 through 7/29/2020 to examine relationships between social vulnerability and COVID-19 deaths. 
    more » « less