skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 28, 2026

Title: On the slice spectral sequence for quotients of norms of Real bordism
Abstract In this paper, we investigate equivariant quotients of the Real bordism spectrum's multiplicative norm by permutation summands. These quotients are of interest because of their close relationship with higher real ‐theories. We introduce new techniques for computing the equivariant homotopy groups of such quotients. As a new example, we examine the theories . These spectra serve as natural equivariant generalizations of connective integral Morava ‐theories. We provide a complete computation of the ‐localized slice spectral sequence of , where is the real sign representation of . To achieve this computation, we establish a correspondence between this localized slice spectral sequence and the ‐based Adams spectral sequence in the category of ‐modules. Furthermore, we provide a full computation of the ‐localized slice spectral sequence of the height‐4 theory . The ‐slice spectral sequence can be entirely recovered from this computation.  more » « less
Award ID(s):
2404828
PAR ID:
10576655
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of Topology
Volume:
18
Issue:
1
ISSN:
1753-8416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce a computationally tractable way to describe the $$\mathbb Z$$-homotopy fixed points of a $$C_{n}$$-spectrum $$E$$, producing a genuine $$C_{n}$$ spectrum $$E^{hn\mathbb Z}$$ whose fixed and homotopy fixed points agree and are the $$\mathbb Z$$-homotopy fixed points of $$E$$. These form the bottom piece of a contravariant functor from the divisor poset of $$n$$ to genuine $$C_{n}$$-spectra, and when $$E$$ is an $$N_{\infty}$$-ring spectrum, this functor lifts to a functor of $$N_{\infty}$$-ring spectra. For spectra like the Real Johnson--Wilson theories or the norms of Real bordism, the slice spectral sequence provides a way to easily compute the $RO(G)$-graded homotopy groups of the spectrum $$E^{hn\mathbb Z}$$, giving the homotopy groups of the $$\mathbb Z$$-homotopy fixed points. For the more general spectra in the contravariant functor, the slice spectral sequences interpolate between the one for the norm of Real bordism and the especially simple $$\mathbb Z$$-homotopy fixed point case, giving us a family of new tools to simplify slice computations. 
    more » « less
  2. Abstract We compute the 2‐adic effective slice spectral sequence (ESSS) for the motivic stable homotopy groups of , a motivic analogue of the connective ‐local sphere over prime fields of characteristic not two. Together with the analogous computation over algebraically closed fields, this yields information about the motivic ‐local sphere over arbitrary base fields of characteristic not two. To compute the spectral sequence, we prove several results that may be of independent interest. We describe the ‐differentials in the slice spectral sequence in terms of the motivic Steenrod operations over general base fields, building on analogous results of Ananyevskiy, Röndigs, and Østvær for the very effective cover of Hermitian K‐theory. We also explicitly describe the coefficients of certain motivic Eilenberg–MacLane spectra and compute the ESSS for the very effective cover of Hermitian K‐theory over prime fields. 
    more » « less
  3. Abstract We define several equivariant concordance invariants using knot Floer homology. We show that our invariants provide a lower bound for the equivariant slice genus and use this to give a family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answering a question of Boyle and Issa. We also apply our formalism to several seemingly nonequivariant questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell regarding stabilization distance. Our formalism suggests a possible route toward establishing the noncommutativity of the equivariant concordance group. 
    more » « less
  4. Abstract Moss’ theorem, which relates Massey products in the$$E_r$$ E r -page of the classical Adams spectral sequence to Toda brackets of homotopy groups, is one of the main tools for calculating Adams differentials. Working in an arbitrary symmetric monoidal stable simplicial model category, we prove a general version of Moss’ theorem which applies to spectral sequences that arise from filtrations compatible with the monoidal structure. This involves the study of Massey products and Toda brackets in a non-strictly associative context. The theorem has broad applications, e.g., to the computation of the motivic slice spectral sequence and other colocalization towers. 
    more » « less
  5. A bstract We initiate the geometric engineering of 2d $$ \mathcal{N} $$ N = (0 , 1) gauge theories on D1-branes probing singularities. To do so, we introduce a new class of backgrounds obtained as quotients of Calabi-Yau 4-folds by a combination of an anti-holomorphic involution leading to a Spin(7) cone and worldsheet parity. We refer to such constructions as Spin(7) orientifolds . Spin(7) orientifolds explicitly realize the perspective on 2d $$ \mathcal{N} $$ N = (0 , 1) theories as real slices of $$ \mathcal{N} $$ N = (0 , 2) ones. Remarkably, this projection is geometrically realized as Joyce’s construction of Spin(7) manifolds via quotients of Calabi-Yau 4-folds by anti-holomorphic involutions. We illustrate this construction in numerous examples with both orbifold and non-orbifold parent singularities, discuss the role of the choice of vector structure in the orientifold quotient, and study partial resolutions. 
    more » « less