skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: 2d $$ \mathcal{N} $$ = (0, 1) gauge theories and Spin(7) orientifolds
A bstract We initiate the geometric engineering of 2d $$ \mathcal{N} $$ N = (0 , 1) gauge theories on D1-branes probing singularities. To do so, we introduce a new class of backgrounds obtained as quotients of Calabi-Yau 4-folds by a combination of an anti-holomorphic involution leading to a Spin(7) cone and worldsheet parity. We refer to such constructions as Spin(7) orientifolds . Spin(7) orientifolds explicitly realize the perspective on 2d $$ \mathcal{N} $$ N = (0 , 1) theories as real slices of $$ \mathcal{N} $$ N = (0 , 2) ones. Remarkably, this projection is geometrically realized as Joyce’s construction of Spin(7) manifolds via quotients of Calabi-Yau 4-folds by anti-holomorphic involutions. We illustrate this construction in numerous examples with both orbifold and non-orbifold parent singularities, discuss the role of the choice of vector structure in the orientifold quotient, and study partial resolutions.  more » « less
Award ID(s):
2112729 1820721
PAR ID:
10348253
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We present a new, geometric perspective on the recently proposed triality of 2d $$ \mathcal{N} $$ N = (0 , 1) gauge theories, based on its engineering in terms of D1-branes probing Spin(7) orientifolds. In this context, triality translates into the fact that multiple gauge theories correspond to the same underlying orientifold. We show how Spin(7) orientifolds based on a particular involution, which we call the universal involution, give rise to precisely the original version of $$ \mathcal{N} $$ N = (0 , 1) triality. Interestingly, our work also shows that the space of possibilities is significantly richer. Indeed, general Spin(7) orientifolds extend triality to theories that can be regarded as consisting of coupled $$ \mathcal{N} $$ N = (0 , 2) and (0 , 1) sectors. The geometric construction of 2d gauge theories in terms of D1-branes at singularities therefore leads to extensions of triality that interpolate between the pure $$ \mathcal{N} $$ N = (0 , 2) and (0 , 1) cases. 
    more » « less
  2. A bstract The 2 d (0 , 2) supersymmetric gauge theories corresponding to the classes of Y p,k (ℂℙ 1 × ℂℙ 1 ) and Y p,k (ℂℙ 2 ) manifolds are identified. The complex cones over these Sasaki-Einstein 7-manifolds are non-compact toric Calabi-Yau 4-folds. These infinite families of geometries are the largest ones for Sasaki-Einstein 7-manifolds whose metrics, toric diagrams, and volume functions are known explicitly. This work therefore presents the largest list of 2 d (0 , 2) supersymmetric gauge theories corresponding to Calabi-Yau 4-folds with known metrics. 
    more » « less
  3. A bstract We introduce and initiate the study of a general class of 2 d $$ \mathcal{N} $$ N = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT 2 ’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. 
    more » « less
  4. A<sc>bstract</sc> We investigate a class of mass deformations that connect pairs of 2d(0,2) gauge theories associated to different toric Calabi-Yau 4-folds. These deformations are generalizations to 2dof the well-known Klebanov-Witten deformation relating the 4dgauge theories for the ℂ2/ℤ2× ℂ orbifold and the conifold. We investigate various aspects of these deformations, including their connection to brane brick models and the relation between the change in the geometry and the pattern of symmetry breaking triggered by the deformation. We also explore how the volume of the Sasaki-Einstein 7-manifold at the base of the Calabi-Yau 4-fold varies under deformation, which leads us to conjecture that it quantifies the number of degrees of freedom of the gauge theory and its dependence on the RG scale. 
    more » « less
  5. We present several expected properties of the holomorphic Floer theory of a holomorphic symplectic manifold. In particular, we propose a conjecture relating holomorphic Floer theory of Hitchin integrable systems and Donaldson-Thomas invariants of non-compact Calabi-Yau 3-folds. More generally, we conjecture that the BPS spectrum of a 4-dimensional N = 2 quantum field theory can be recovered from the holomorphic Floer theory of the corresponding Seiberg-Witten integrable system. 
    more » « less