skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Incomplete mass closure in atmospheric nanoparticle growth
Abstract Nucleation and subsequent growth of new aerosol particles in the atmosphere is a major source of cloud condensation nuclei and persistent large uncertainty in climate models. Newly formed particles need to grow rapidly to avoid scavenging by pre-existing aerosols and become relevant for the climate and air quality. In the continental atmosphere, condensation of oxygenated organic molecules is often the dominant mechanism for rapid growth. However, the huge variety of different organics present in the continental boundary layer makes it challenging to predict nanoparticle growth rates from gas-phase measurements. Moreover, recent studies have shown that growth rates of nanoparticles derived from particle size distribution measurements show surprisingly little dependency on potentially condensable vapors observed in the gas phase. Here, we show that the observed nanoparticle growth rates in the sub-10 nm size range can be predicted in the boreal forest only for springtime conditions, even with state-of-the-art mass spectrometers and particle sizing instruments. We find that, especially under warmer conditions, observed growth is slower than predicted from gas-phase condensation. We show that only a combination of simple particle-phase reaction schemes, phase separation due to non-ideal solution behavior, or particle-phase diffusion limitations can explain the observed lower growth rates. Our analysis provides first insights as to why atmospheric nanoparticle growth rates above 10 nm h−1are rarely observed. Ultimately, a reduction of experimental uncertainties and improved sub-10 nm particle hygroscopicity and chemical composition measurements are needed to further investigate the occurrence of such a growth rate-limiting process.  more » « less
Award ID(s):
2431817
PAR ID:
10577163
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
8
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grassian, Vicki (Ed.)
    Nanocluster aerosol (NCA: particles in the size range of 1–3 nm) are a critically important, yet understudied, class of atmospheric aerosol particles. NCA efficiently deposit in the human respiratory system and can translocate to vital organs. Due to their high surface area-to-mass ratios, NCA are associated with a heightened propensity for bioactivity and toxicity. Despite the human health relevance of NCA, little is known regarding the prevalence of NCA in indoor environments where people spend the majority of their time. In this study, we quantify the formation and transformation of indoor atmospheric NCA down to 1 nm via high-resolution online nanoparticle measurements during propane gas cooking in a residential building. We observed a substantial pool of sub-1.5 nm NCA in the indoor atmosphere during cooking periods, with aerosol number concentrations often dominated by the newly formed NCA. Indoor atmospheric NCA emission factors can reach up to ~10^16 NCA/kg-fuel during propane gas cooking and can exceed those for vehicles with gasoline and diesel engines. Such high emissions of combustion-derived indoor NCA can result in substantial NCA respiratory exposures and dose rates for children and adults, significantly exceeding that for outdoor traffic-associated NCA. Combustion-derived indoor NCA undergo unique size-dependent physical transformations, strongly influenced by particle coagulation and condensation of low-volatility cooking vapors. We show that indoor atmospheric NCA need to be measured directly and cannot be predicted using conventional indoor air pollution markers such as PM2.5 mass concentrations and NOx (NO + NO2) mixing ratios. 
    more » « less
  2. Abstract. In the present-day atmosphere, sulfuric acid is the mostimportant vapour for aerosol particle formation and initial growth. However,the growth rates of nanoparticles (<10 nm) from sulfuric acidremain poorly measured. Therefore, the effect of stabilizing bases, thecontribution of ions and the impact of attractive forces on molecularcollisions are under debate. Here, we present precise growth ratemeasurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performedunder atmospheric conditions in the CERN (EuropeanOrganization for Nuclear Research) CLOUD chamber. Our results showthat the evaporation of sulfuric acid particles above 2 nm is negligible,and growth proceeds kinetically even at low ammonia concentrations. Theexperimental growth rates exceed the hard-sphere kinetic limit for thecondensation of sulfuric acid. We demonstrate that this results fromvan der Waals forces between the vapour molecules and particles anddisentangle it from charge–dipole interactions. The magnitude of theenhancement depends on the assumed particle hydration and collisionkinetics but is increasingly important at smaller sizes, resulting in asteep rise in the observed growth rates with decreasing size. Including theexperimental results in a global model, we find that the enhanced growth rate ofsulfuric acid particles increases the predicted particle number concentrationsin the upper free troposphere by more than 50 %. 
    more » « less
  3. Abstract The effect of sulfur dioxide on particle formation and growth by ozonolysis of three monoterpenes (α‐pinene,β‐pinene, and limonene) and isoprene was investigated in the presence of monodisperse ammonium sulfate seed particles and an OH scavenger in a flow tube under dry conditions. Without sulfur dioxide, new particle formation was not observed, and seed particle growth was consistent with condensation of low‐volatility oxidation products produced from each organic precursor. With sulfur dioxide, new particle formation was observed from every precursor studied, consistent with sulfuric acid formation by reaction of sulfur dioxide with stabilized Criegee Intermediates. The presence of sulfur dioxide did not significantly affect seed particle growth rates fromα‐pinene and limonene ozonolysis, although chemical composition measurements revealed the presence of organosulfates in the particles following SO2exposure. Contrarily, the growth of seeds byβ‐pinene and isoprene ozonolysis was considerably enhanced by sulfur dioxide, and chemical composition measurements revealed that the enhanced growth was not due to additional organic material, suggesting that inorganic sulfate was likely responsible. The results suggest that a previously unconsidered particle‐phase pathway to growth activated by sulfur dioxide may alter production of cloud condensation nuclei over regions with significant SO2‐alkene interactions. 
    more » « less
  4. Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅  nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅  nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that the reduction of the particle size profoundly affects the structural changes associated with the CTCST. The unusual IM state is also observed as segregated domains in the 135 nm particle, but the collective structural transformations are more hindered in small particles. The volume change decreases to 2%–3%, almost half the value found for 500 nm particles (5%–8%), even though the linear thermal expansion coefficients are larger for the smaller particles. Furthermore, photoexcitation from the IM and LT states does not turn into single phases in the smaller particles, presumably because of the multiple interfaces and/or internal stress generated by the coexistence of small CoII–FeIIIand CoIII–FeIIdomains in the lattice. Since the reduced particle size limits cooperativity and domain growth in the lattice, CTCST in the small particle sample becomes less sensitive to external stimuli. 
    more » « less
  5. Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-Pinene photooxidation is a well-studied system experimentally, for which detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-NO α-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concentrations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH levels yield the same secondary organic aerosol (SOA) growth, whereas GECKO-A predicts greater SOA growth under high OH levels. SOA formation in the chamber is a result of a competition among the rates of gas-phase oxidation to low-volatility products, wall deposition of these products, and condensation into the aerosol phase. Various processes – such as photolysis of condensed-phase products, particle-phase dimerization, and peroxy radical autoxidation – are explored to rationalize the observations. In order to explain the observed similar SOA growth at different OH levels, we conclude that vapor wall loss in the Caltech chamber is likely of order 10−5 s−1, consistent with previous experimental measurements in that chamber. We find that GECKO-A tends to overpredict the contribution to SOA of later-generation oxidation products under high-OH conditions. Moreover, we propose that autoxidation may alternatively resolve some or all of the measurement–model discrepancy, but this hypothesis cannot be confirmed until more explicit mechanisms are established for α-pinene autoxidation. The key role of the interplay among oxidation rate, product volatility, and vapor–wall deposition in chamber experiments is illustrated. 
    more » « less