skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The origin of charged domains on the surface of ferroelastic BiVO 4 co‐doped with sodium and molybdenum
Abstract Ferroelastic BiVO4has charged surface domains, even though its crystal structure is non‐polar. These charged domains can be detected by piezo‐force microscopy and lead to spatially selective photochemical reactions. The photochemical reactivity of (Bi0.96Na0.04)(V0.92Mo0.08)O4is studied above and below the ferroelastic transition temperature to better understand the origin of charged ferroelastic domains. The results demonstrate that spatially selective reactivity occurs above the ferroelastic transition temperature, similar to what is observed below the transition temperature. Furthermore, when the sample is cooled after brief excursions above the transition temperature, the domains reform with a microstructure that is indistinguishable from what is observed before the transition. The results are consistent with the idea that inhomogeneous distributions of charged point defects, created by stress in the ferroelastic domains, lead to charged domains that promote spatially selective photochemical reactions. If these inhomogeneous defect distributions are not homogenized above the transition temperature, they can template the re‐creation of the original domain microstructure after the transformation back to the ferroelastic phase.  more » « less
Award ID(s):
2016267
PAR ID:
10577282
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
108
Issue:
7
ISSN:
0002-7820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over the past 50 years, a principal approach to controlling conventional photochemical reactions has relied on imposing geometric constraints on reactant or transition state via conducting photochemistry in the organized or constraining media. Herein, we describe a fundamentally different approach to affect the course of photochemical reactions (photochemical rearrangements) by utilizing spatially selective excitation of specific electronic transitions with plane‐polarized light in the reactant molecules uniformly aligned in the nematic liquid crystal phase. In particular, we focused on the Type B enone rearrangement of 4,4‐diarylcyclohexenones – one of the most common photochemical rearrangements. We demonstrated that the aryl migratory aptitude in this reaction was attenuated in response to changing an angle between the polarization plane of the incident light and the alignment direction of the nematic liquid crystal, with the enhanced aryl migration achieved when the polarization plane coincided with the transition dipole moment leading to the excited state responsible for this migration. The spatially‐selective initial excitation therefore was overruling the electronic factors responsible for the relative ratio of the two alternative photoproducts. The experimental findings were further supported by the results of a computational study. This work showcases a new fundamental paradigm in controlling photochemical reactivity and selectivity of photoreactions. 
    more » « less
  2. We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTNis detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTNplateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN, most likely via enhanced hybridization between the Eu 4fstates and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state. 
    more » « less
  3. Abstract Controlling crystallization kinetics is key to overcome the temperature–time dilemma in phase change materials employed for data storage. While the amorphous phase must be preserved for more than 10 years at slightly above room temperature to ensure data integrity, it has to crystallize on a timescale of several nanoseconds following a moderate temperature increase to near 2/3Tmto compete with other memory devices such as dynamic random access memory (DRAM). Here, a calorimetric demonstration that this striking variation in kinetics involves crystallization occurring either from the glassy or from the undercooled liquid state is provided. Measurements of crystallization kinetics of Ge2Sb2Te5with heating rates spanning over six orders of magnitude reveal a fourfold decrease in Kissinger activation energy for crystallization upon the glass transition. This enables rapid crystallization above the glass transition temperatureTg. Moreover, highly unusual for glass‐forming systems, crystallization at conventional heating rates is observed more than 50 °C belowTg, where the atomic mobility should be vanishingly small. 
    more » « less
  4. Abstract Temperature‐ and electric‐field‐induced structural transitions in a polydomain ferroelectric can have profound effects on its electrothermal susceptibilities. Here, the role of such ferroelastic domains on the pyroelectric and electrocaloric response is experimentally investigated in thin films of the tetragonal ferroelectric PbZr0.2Ti0.8O3. By utilizing epitaxial strain, a rich set of ferroelastic polydomain states spanning a broad thermodynamic phase space are stabilized. Using temperature‐dependent scanning‐probe microscopy, X‐ray diffraction, and high‐frequency phase‐sensitive pyroelectric measurements, the propensity of domains to reconfigure under a temperature perturbation is quantitatively studied. In turn, the “extrinsic” contributions to pyroelectricity exclusively due to changes between the ferroelastic domain population is elucidated as a function of epitaxial strain. Further, using highly sensitive thin‐film resistive thermometry, direct electrocaloric temperature changes are measured on these polydomain thin films for the first time. The results demonstrate that temperature‐ and electric‐field‐driven domain interconversion under compressive strain diminish both the pyroelectric and the electrocaloric effects, while both these susceptibilities are enhanced due to the exact‐opposite effect from the extrinsic contributions under tensile strain. 
    more » « less
  5. The extraordinary performances of phase-coexisting ferroelectrics are significantly affected by not only the phase constitution but also the motion of domain walls. The study on the role of phase coexistence in the formation of ferroelectric and ferroelastic domain microstructures is of great importance to explain the enhanced piezoelectric properties. In situ high-energy diffraction and the Rayleigh law are utilized to reveal the interplay of phase constitution and domain configuration to the macroscopic electromechanical coupling effect in the morphotropic phase boundary composition of 0.365BiScO 3 –0.635PbTiO 3 during the application of a weak electrical loading in the present study. It was found that anisotropic phase transition and domain switching occur in polycrystalline ferroelectric ceramics and a phase transition occurs dramatically beyond the coercive field. Taking into account the important role of coupled ferroelectric and ferroelastic domain microstructures, we conceived a configuration of monoclinic domains coexisting with and bridging the tetragonal domains. The existence of bridging domains would provide an insight into the interplay of the phase and domain and explains the piezoelectric performance in the vicinity of morphotropic phase boundaries. 
    more » « less