skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 10, 2025

Title: RedCode: Risky Code Execution and Generation Benchmark for Code Agents
With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding and software development, safety and security concerns, such as generating or executing malicious code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, an evaluation platform with benchmarks grounded in four key principles: real interaction with systems, holistic evaluation of unsafe code generation and execution, diverse input formats, and high-quality safety scenarios and tests. RedCode consists of two parts to evaluate agents’ safety in unsafe code execution and generation: (1) RedCode-Exec provides challenging code prompts in Python as inputs, aiming to evaluate code agents’ ability to recognize and handle unsafe code. We then map the Python code to other programming languages (e.g., Bash) and natural text summaries or descriptions for evaluation, leading to a total of over 4,000 testing instances. We provide 25 types of critical vulnerabilities spanning various domains, such as websites, file systems, and operating systems. We provide a Docker sandbox environment to evaluate the execution capabilities of code agents and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents’ vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing unsafe operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Unsafe operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen reveal that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are publicly available at https://github.com/AI-secure/RedCode.  more » « less
Award ID(s):
2229876
PAR ID:
10577377
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the the Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS)
Date Published:
Format(s):
Medium: X
Location:
Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Most existing pre-trained language models for source code focus on learning the static code text, typically augmented with static code structures (abstract syntax tree, dependency graphs, etc.). However, program semantics will not be fully exposed before the real execution. Without an understanding of the program execution, statically pre-trained models fail to comprehensively capture the dynamic code properties, such as the branch coverage and the runtime variable values, and they are consequently less effective at code understanding tasks, such as retrieving semantic clones and detecting software vulnerabilities. To close the gap between the static nature of language models and the dynamic characteristics of programs, we introduce TRACED, an execution-aware pre-training strategy for source code. Specifically, we pre-train code language models with a combination of source code, executable inputs, and corresponding execution traces. Our goal is to teach code models the complicated execution logic during the pre-training, enabling the model to statically estimate the dynamic code properties without repeatedly executing code during task-specific fine-tuning. To illustrate the effectiveness of our proposed approach, we fine-tune and evaluate TRACED on three downstream tasks: static execution estimation, clone retrieval, and vulnerability detection. The empirical results show that TRACED relatively improves the statically pre-trained code models by 12.4% for complete execution path prediction and by 25.2% for runtime variable value predictions. TRACED also significantly outperforms statically pre-trained models in clone retrieval and vulnerability detection across four public benchmarks. 
    more » « less
  2. Generative AI models, specifically large language models (LLMs), have made strides towards the long-standing goal of text-to-code generation. This progress has invited numerous studies of user interaction. However, less is known about the struggles and strategies of non-experts, for whom each step of the text-to-code problem presents challenges: describing their intent in natural language, evaluating the correctness of generated code, and editing prompts when the generated code is incorrect. This paper presents a large-scale controlled study of how 120 beginning coders across three academic institutions approach writing and editing prompts. A novel experimental design allows us to target specific steps in the text-to-code process and reveals that beginners struggle with writ- ing and editing prompts, even for problems at their skill level and when correctness is automatically determined. Our mixed-methods evaluation provides insight into student processes and perceptions with key implications for non-expert Code LLM use within and outside of education. 
    more » « less
  3. Students, especially those outside the field of cybersecurity, are increasingly turning to Large Language Model (LLM)-based generative AI tools for coding assistance. These AI code generators provide valuable support to developers by generating code based on provided input and instructions. However, the quality and accuracy of the generated code can vary, depending on factors such as task complexity, the clarity of instructions, and the model’s familiarity with the programming language. Additionally, these generated codes may inadvertently utilize vulnerable built-in functions, potentially leading to source code vulnerabilities and exploits. This research undertakes an in-depth analysis and comparison of code generation, code completion, and security suggestions offered by prominent AI models, including OpenAI CodeX, CodeBert, and ChatGPT. The research aims to evaluate the effectiveness and security aspects of these tools in terms of their code generation, code completion capabilities, and their ability to enhance security. This analysis serves as a valuable resource for developers, enabling them to proactively avoid introducing security vulnerabilities in their projects. By doing so, developers can significantly reduce the need for extensive revisions and resource allocation, whether in the short or long term. 
    more » « less
  4. One of the most significant challenges in the field of software code auditing is the presence of vulnerabilities in software source code. Every year, more and more software flaws are discovered, either internally in proprietary code or publicly disclosed. These flaws are highly likely to be exploited and can lead to system compromise, data leakage, or denial of service. To create a large-scale machine learning system for function-level vulnerability identification, we utilized a sizable dataset of C and C++ open-source code containing millions of functions with potential buffer overflow exploits. We have developed an efficient and scalable vulnerability detection method based on neural network models that learn features extracted from the source codes. The source code is first converted into an intermediate representation to remove unnecessary components and shorten dependencies. We maintain the semantic and syntactic information using state-ofthe- art word embedding algorithms such as GloVe and fastText. The embedded vectors are subsequently fed into neural networks such as LSTM, BiLSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we have proposed a neural network model that can overcome issues associated with traditional neural networks. We have used evaluation metrics such as F1 score, precision, recall, accuracy, and total execution time to measure the performance. We have conducted a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We have found that all neural network models provide higher accuracy when we use semantic and syntactic information as features. However, this approach requires more execution time due to the added complexity of the word embedding algorithm. Moreover, our proposed model provides higher accuracy than LSTM, BiLSTM, LSTM-Autoencoder, word2vec and BERT models, and the same accuracy as the GPT-2 model with greater efficiency. 
    more » « less
  5. Software applications and workloads, especially within the domains of Cloud computing and large-scale AI model training, exert considerable demand on computing resources, thus contributing significantly to the overall energy footprint of the IT industry. In this paper, we present an in-depth analysis of certain software coding practices that can play a substantial role in increasing the application’s overall energy consumption, primarily stemming from the suboptimal utilization of computing resources. Our study encompasses a thorough investigation of 16 distinct code smells and other coding malpractices across 31 real-world open-source applications written in Java and Python. Through our research, we provide compelling evidence that various common refactoring techniques, typically employed to rectify specific code smells, can unintentionally escalate the application’s energy consumption. We illustrate that a discerning and strategic approach to code smell refactoring can yield substantial energy savings. For selective refactorings, this yields a reduction of up to 13.1% of energy consumption and 5.1% of carbon emissions per workload on average. These findings underscore the potential of selective and intelligent refactoring to substantially increase energy efficiency of Cloud software systems. 
    more » « less