Digital in-line holography is a versatile method to obtain lens-less images of small particles, such as aerosol particles, ranging from several to over one hundred microns in size. It has been shown theoretically, and verified by measurement, that a particle’s extinction cross section can also be obtained from a digital hologram. The process involves a straightforward integration, but if noise is present it fails to give accurate results. Here we present a method to reduce the noise in measured holograms of single particles for the purpose of rendering the cross-section estimation more effective. The method involves masking the complex-valued particle image-amplitude obtained from a noisy hologram followed by a Fresnel transformation to generate a new noise-reduced hologram. Examples are given at two wavelengths, 440 nm and 1040 nm, where the cross section is obtained for a micro-sphere particle and several non-spherical particles approximately 50 microns in size.
more »
« less
Isolating single-particle holograms in a multiparticle digital hologram
A method is developed to isolate the interference-fringe pattern associated with an individual particle from a single digital in-line hologram containing overlapping patterns from multiple particles. The method is illustrated with a measured hologram of road-dust aerosol particles nominally 20-50 µm in size. It is further tested for 2.5-3.0 µm particles by simulation with the discrete dipole approximation. By incrementally degrading a hologram’s resolution, the method is shown to perform well for particles that are poorly resolved, at least for the first few central fringes in the pattern. The method may be useful in cases where particle characterization is done directly from a hologram, i.e., instead of from the reconstructed images.
more »
« less
- Award ID(s):
- 2107715
- PAR ID:
- 10577474
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Continuum
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2770-0208
- Format(s):
- Medium: X Size: Article No. 668
- Size(s):
- Article No. 668
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The optical extinction caused by a small particle, such as an aerosol particle, is an important measurable quantity. Understanding the influence of atmospheric aerosols on the climate, assessing visibility in urban environments, and remote sensing applications such as lidar all need accurate measurements of particle extinction. While multiple methods are known to measure extinction, digital in-line holography (DIH) features the unique ability to provide contact-free images of particles simultaneously with estimates for the extinction cross section. This is achieved through an integration of a measured hologram followed by an extrapolation. By means of a supercontinuum laser, we investigate the measurement of the cross section via DIH for stationary particles across a broad spectrum, from 440 nm to 1040 nm. The particles considered include a 50 µm glass microsphere, a volcanic ash particle, and an iron(III) oxide particle. The results show the ability to estimate a particle’s cross section to within 10% error across portions of the spectrum and approximately 20% error otherwise. An examination of the accompanying hologram-derived particle images reveals details in the images that evolve with wavelength. The behavior suggests a basic means to resolve whether absorption or scattering dominates a particle’s extinction.more » « less
-
We develop a novel algorithm for large-scale holographic reconstruction of 3D particle fields. Our method is based on a multiple-scattering beam propagation method (BPM) combined with sparse regularization that enables recovering dense 3D particles of high refractive index contrast from a single hologram. We show that the BPM-computed hologram generates intensity statistics closely matching with the experimental measurements and provides up to 9× higher accuracy than the single-scattering model. To solve the inverse problem, we devise a computationally efficient algorithm, which reduces the computation time by two orders of magnitude as compared to the state-of-the-art multiple-scattering based technique. We demonstrate the superior reconstruction accuracy in both simulations and experiments under different scattering strengths. We show that the BPM reconstruction significantly outperforms the single-scattering method in particular for deep imaging depths and high particle densities.more » « less
-
Holographic particle characterization uses in-line holographic video microscopy to track and characterize individual colloidal particles dispersed in their native fluid media. Applications range from fundamental research in statistical physics to product development in biopharmaceuticals and medical diagnostic testing. The information encoded in a hologram can be extracted by fitting to a generative model based on the Lorenz–Mie theory of light scattering. Treating hologram analysis as a high-dimensional inverse problem has been exceptionally successful, with conventional optimization algorithms yielding nanometer precision for a typical particle's position and part-per-thousand precision for its size and index of refraction. Machine learning previously has been used to automate holographic particle characterization by detecting features of interest in multi-particle holograms and estimating the particles' positions and properties for subsequent refinement. This study presents an updated end-to-end neural-network solution called CATCH (Characterizing and Tracking Colloids Holographically) whose predictions are fast, precise, and accurate enough for many real-world high-throughput applications and can reliably bootstrap conventional optimization algorithms for the most demanding applications. The ability of CATCH to learn a representation of Lorenz–Mie theory that fits within a diminutive 200 kB hints at the possibility of developing a greatly simplified formulation of light scattering by small objects.more » « less
-
Abstract During drying, liquid‐applied particulate coatings develop stress and are consequently prone to stress‐induced defects, such as cracking, curling, and delamination. In this work, the stress development and cracking of coatings, prepared from aqueous silica and zinc oxide particle suspensions, were characterized using cantilever beam deflection with simultaneous imaging of the coating surface. Drying uniformity was improved and lateral or edge‐in drying was discouraged by using thin silicone walls around the perimeter of the cantilever. Coatings prepared from larger monodisperse silica particles (D50∼ 0.9 µm) dried uniformly but had a high critical cracking thickness (>150 µm) that prevented simultaneous study of stress development and cracking. Coatings prepared from smaller silica particles (D50∼ 0.3 µm) cracked readily at low thicknesses but exhibited edge‐in drying that complicated the stress measurement data. This drying nonuniformity was connected to the potential for these small particles to accumulate at the coating surface during drying. Hence, the selection of particle size and density was critical to drying uniformity when characterizing stress development and cracking. Coatings prepared from suspensions of zinc oxide particles (D50∼ 0.4 µm) were well‐suited for these studies, with uniform drying stress peaking at ∼1 MPa. Characteristic features in the stress development data above and below the critical cracking thickness (53 µm) were identified, demonstrating that cantilever beam deflection is a useful tool for studying the effectiveness of crack mitigation methods and the fundamentals of coating fracture during drying.more » « less
An official website of the United States government
