Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
A method is developed to isolate the interference-fringe pattern associated with an individual particle from a single digital in-line hologram containing overlapping patterns from multiple particles. The method is illustrated with a measured hologram of road-dust aerosol particles nominally 20-50 µm in size. It is further tested for 2.5-3.0 µm particles by simulation with the discrete dipole approximation. By incrementally degrading a hologram’s resolution, the method is shown to perform well for particles that are poorly resolved, at least for the first few central fringes in the pattern. The method may be useful in cases where particle characterization is done directly from a hologram, i.e., instead of from the reconstructed images.more » « less
-
Free, publicly-accessible full text available March 1, 2026
-
Small particles that are trapped, deposited, or otherwise fixed can be imaged by digital holography with a resolution approaching that of optical microscopy. When such particles are in motion as an aerosol, a comparable resolution is challenging to achieve. Using a simplified bi-telecentric lens system, we demonstrate that 1µm free-flowing aerosol particles can be imaged at the single-particle level using digital in-line holography. The imaging is demonstrated with an aerosol of 1µm polystyrene latex microspheres and a ragweed pollen aerosol.more » « less
-
The nature of structural changes of nanosecond laser modification inside silicon is investigated. Raman spectroscopy and transmission electron microscopy measurements of cross sections of the modified channels reveal highly localized crystal deformation. Raman spectroscopy measurements prove the existence of amorphous silicon inside nanosecond laser induced modifications, and the percentage of amorphous silicon is calculated based on the Raman spectrum. For the first time, the high-resolution transmission electron microscopy images directly show the appearance of amorphous silicon inside nanosecond laser induced modifications, which corroborates the indirect measurements from Raman spectroscopy. The laser modified channel consists of a small amount of amorphous silicon embedded in a disturbed crystal structure accompanied by strain. This finding may explain the origin of the positive refractive index change associated with the written channels that may serve as optical waveguides.more » « less
-
The optical extinction caused by a small particle, such as an aerosol particle, is an important measurable quantity. Understanding the influence of atmospheric aerosols on the climate, assessing visibility in urban environments, and remote sensing applications such as lidar all need accurate measurements of particle extinction. While multiple methods are known to measure extinction, digital in-line holography (DIH) features the unique ability to provide contact-free images of particles simultaneously with estimates for the extinction cross section. This is achieved through an integration of a measured hologram followed by an extrapolation. By means of a supercontinuum laser, we investigate the measurement of the cross section via DIH for stationary particles across a broad spectrum, from 440 nm to 1040 nm. The particles considered include a 50 µm glass microsphere, a volcanic ash particle, and an iron(III) oxide particle. The results show the ability to estimate a particle’s cross section to within 10% error across portions of the spectrum and approximately 20% error otherwise. An examination of the accompanying hologram-derived particle images reveals details in the images that evolve with wavelength. The behavior suggests a basic means to resolve whether absorption or scattering dominates a particle’s extinction.more » « less
-
Digital in-line holography is a versatile method to obtain lens-less images of small particles, such as aerosol particles, ranging from several to over one hundred microns in size. It has been shown theoretically, and verified by measurement, that a particle’s extinction cross section can also be obtained from a digital hologram. The process involves a straightforward integration, but if noise is present it fails to give accurate results. Here we present a method to reduce the noise in measured holograms of single particles for the purpose of rendering the cross-section estimation more effective. The method involves masking the complex-valued particle image-amplitude obtained from a noisy hologram followed by a Fresnel transformation to generate a new noise-reduced hologram. Examples are given at two wavelengths, 440 nm and 1040 nm, where the cross section is obtained for a micro-sphere particle and several non-spherical particles approximately 50 microns in size.more » « less
-
Abstract Digital in-line holography (DIH) is an established method to image small particles in a manner where image reconstruction is performed computationally post-measurement. This ability renders it ideal for aerosol characterization, where particle collection or confinement is often difficult, if not impossible. Conventional DIH provides a gray-scale image akin to a particle’s silhouette, and while it gives the particle size and shape, there is little information about the particle material. Based on the recognition that the spectral reflectance of a surface is partly determined by the material, we demonstrate a method to image free-flowing particles with DIH in color with the eventual aim to differentiate materials based on the observed color. Holograms formed by the weak backscattered light from individual particles illuminated by red, green, and blue lasers are recorded by a color sensor. Images are reconstructed from the holograms and then layered to form a color image, the color content of which is quantified by chromaticity analysis to establish a representative signature. A variety of mineral dust aerosols are studied where the different signatures suggest the possibility to differentiate particle material. The ability of the method to resolve the inhomogeneous composition within a single particle in some cases is shown as well.more » « less
An official website of the United States government
