Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricacies of the terrain at hand, thus enabling robust and resilient locomotion. In this paper we capitalize upon recent developments on soft pneumatic legged robots to introduce a closed-loop trajectory tracking control scheme for operation over flat ground. Closed-loop pneumatic actuation feedback is achieved via a compact and portable pneumatic regulation board. Experimental results reveal that our soft legged robot can precisely control its body height and orientation while in quasi-static operation based on a geometric model. The robot can track both straight line and curved trajectories as well as variable-height trajectories. This work lays the basis to enable autonomous navigation for soft legged robots.
more »
« less
Control of Silicone-Sheathed Electrostatic Clutches for Soft Pneumatic Actuator Position Control
A minimal number of rigid constraints makes soft robots versatile, but many of these robots use soft pneumatic actuators (SPAs) designed to inflate through a single trajectory. In an unloaded actuator, this trajectory is dictated by the arrangement of in-extensible and elastic materials. External strain limiters can be added post-fabrication to SPAs, but these are passive devices. In this paper, we offer design and control techniques for an electrically active strain limiter that is easily adhered to existing SPAs to provide signal-controlled force output. These sheathed electroadhesive (EA) clutches apply antagonistic forces through the constitutive properties of their silicone sheathing and through the variable friction of the clutch itself. We are able to design the sheathing to passively support loads or minimize passive stiffness. We control clutch forces via an augmented pulse-width-modulation (PWM) of the high voltage square-wave input. We perform an initial, empirical characterization on the system with tensile material testing. The clutch system resists motion with sustained forces ranging from 0.5N to 22N. We then demonstrate its ability to apply predictable nonconservative work in a dynamic catching task, where it can limit catching height from 15cm to 1cm. Finally, we attach it to an inverse pneumatic artificial muscle (IPAM) to show that variable strain limitation can control position of the SPA endpoint.
more »
« less
- Award ID(s):
- 1935294
- PAR ID:
- 10577620
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 9798350381825
- Format(s):
- Medium: X
- Location:
- San Diego, California, USA.
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soft pneumatic actuators (SPAs) offer a promising alternative for biomedical applications requiring high sensitivity and precise manipulation due to their inherent compliance. 3D- printed multi-modal zig-zag SPAs exhibit potential in this area by achieving repeatable and precise shape changes due to their chambered design. However, achieving accurate position control remains a challenge. This work proposes a hybrid control strategy for multi-modal zig-zag SPAs that combines feed-forward and proportional-integral-derivative (PID) control to enhance positioning accuracy. A Pseudo Rigid Body (PRB) based inverse dynamic model is employed for the feed-forward component. The effectiveness of the controller is evaluated through extensive simulations and experiments. Results demonstrate that the hybrid control strategy achieves up to 29.5% and 31.6% improvement in accuracy compared to the PID and feed-forward controllers, respectively, within the operational bandwidth.more » « less
-
Abstract Mechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto‐active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue‐robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next‐generation mechanotherapy.more » « less
-
Shape change enables new capabilities for robots. One class of robots capable of dramatic shape change is soft growing “vine” robots. These robots usually feature global actuation methods for bending that limit them to simple, constant-curvature shapes. Achieving more complex “multi-bend” configurations has also been explored but requires choosing the desired configuration ahead of time, exploiting contact with the environment to maintain previous bends, or using pneumatic actuation for shape locking. In this paper, we present a novel design that enables passive, on-demand shape locking. Our design leverages a passive tip mount to apply hook-and-loop fasteners that hold bends without any pneumatic or electrical input. We characterize the robot's kinematics and ability to hold locked bends. We also experimentally evaluate the effect of hook-and-loop fasteners on beam and joint stiffness. Finally, we demonstrate our proof-of-concept prototype in 2D. Our passive shape locking design is a step towards easily reconfigurable robots that are lightweight, low-cost, and low-power.more » « less
-
Soft robots actuate themselves and their world through induced pressure and strain, and can often sense these quantities as well. We hypothesize that coordination in a tightly coupled collective of soft robots can be achieved with purely proprioceptive sensing and no direct communication. In this paper, we target a platform of soft pneumatic modules capable of sensing strain on their perimeter, with the goal of using only the robots' own soft actuators and sensors as a medium for distributed coordination. However, methods for modelling, sensing, and controlling strain in such soft robot collectives are not well understood. To address this challenge, we introduce and validate a computationally efficient spring-based model for two-dimensional sheets of soft pneumatic robots. We then translate a classical consensus algorithm to use only proprioceptive data, test in simulation, and show that due to the physical coupling between robots we can achieve consensus-like coordination. We discuss the unique challenges of strain sensors and next steps to bringing these findings to hardware. These findings have promising potential for smart materials and large-scale collectives, because they omit the need for additional communication infrastructure to support coordination.more » « less
An official website of the United States government

