skip to main content


Search for: All records

Award ID contains: 1935294

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electroadhesive devices with dielectric films can electrically program changes in stiffness and adhesion, but require hundreds of volts and are subject to failure by dielectric breakdown. Recent work on ionoelastomer heterojunctions has enabled reversible electroadhesion with low voltages, but these materials exhibit limited force capacities and high detachment forces. It is a grand challenge to engineer electroadhesives with large force capacities and programmable detachment at low voltages (<10 V). In this work, tough ionoelastomer/metal mesh composites with low surface energies are synthesized and surface roughness is controlled to realize sub‐ten‐volt clutches that are small, strong, and easily detachable. Models based on fracture and contact mechanics explain how clutch compliance and surface texture affect force capacity and contact area, which is validated over different geometries and voltages. These ionoelastomer clutches outperform the best existing electroadhesive clutches by fivefold in force capacity per unit area (102 N cm^-2), with a 40‐fold reduction in operating voltage (± 7.5 V). Finally, the ability of the ionoelastomer clutches to resist bending moments in a finger wearable and as a reversible adhesive in an adjustable phone mount is demonstrated. 
    more » « less
    Free, publicly-accessible full text available September 21, 2024
  2. Free, publicly-accessible full text available June 28, 2024
  3. The most common sensing modalities found in a robot perception system are vision and touch, which together can provide global and highly localized data for manipulation. However, these sensing modalities often fail to adequately capture the behavior of target objects during the critical moments as they transition out of static, controlled contact with an end-effector to dynamic and uncontrolled motion. In this work, we present a novel multimodal visuotactile sensor that provides simultaneous visuotactile and proximity depth data. The sensor integrates an RGB camera and air pressure sensor to sense touch with an infrared time-of-flight (ToF) camera to sense proximity by leveraging a selectively transmissive soft membrane to enable the dual sensing modalities. We present the mechanical design, fabrication techniques, algorithm implementations, and evaluation of the sensor's tactile and proximity modalities. The sensor is demonstrated in three open-loop robotic tasks: approaching and contacting an object, catching, and throwing. The fusion of tactile and proximity data could be used to capture key information about a target object's transition behavior for sensor-based control in dynamic manipulation. 
    more » « less