skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1935294

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electroadhesive devices with dielectric films can electrically program changes in stiffness and adhesion, but require hundreds of volts and are subject to failure by dielectric breakdown. Recent work on ionoelastomer heterojunctions has enabled reversible electroadhesion with low voltages, but these materials exhibit limited force capacities and high detachment forces. It is a grand challenge to engineer electroadhesives with large force capacities and programmable detachment at low voltages (<10 V). In this work, tough ionoelastomer/metal mesh composites with low surface energies are synthesized and surface roughness is controlled to realize sub‐ten‐volt clutches that are small, strong, and easily detachable. Models based on fracture and contact mechanics explain how clutch compliance and surface texture affect force capacity and contact area, which is validated over different geometries and voltages. These ionoelastomer clutches outperform the best existing electroadhesive clutches by fivefold in force capacity per unit area (102 N cm−2), with a 40‐fold reduction in operating voltage (± 7.5 V). Finally, the ability of the ionoelastomer clutches to resist bending moments in a finger wearable and as a reversible adhesive in an adjustable phone mount is demonstrated. 
    more » « less
  2. Abstract Stiffness is a mechanical property of vital importance to any material system and is typically considered a static quantity. Recent work, however, has shown that novel materials with programmable stiffness can enhance the performance and simplify the design of engineered systems, such as morphing wings, robotic grippers, and wearable exoskeletons. For many of these applications, the ability to program stiffness with electrical activation is advantageous because of the natural compatibility with electrical sensing, control, and power networks ubiquitous in autonomous machines and robots. The numerous applications for materials with electrically driven stiffness modulation has driven a rapid increase in the number of publications in this field. Here, a comprehensive review of the available materials that realize electroprogrammable stiffness is provided, showing that all current approaches can be categorized as using electrostatics or electrically activated phase changes, and summarizing the advantages, limitations, and applications of these materials. Finally, a perspective identifies state‐of‐the‐art trends and an outlook of future opportunities for the development and use of materials with electroprogrammable stiffness. 
    more » « less
  3. A minimal number of rigid constraints makes soft robots versatile, but many of these robots use soft pneumatic actuators (SPAs) designed to inflate through a single trajectory. In an unloaded actuator, this trajectory is dictated by the arrangement of in-extensible and elastic materials. External strain limiters can be added post-fabrication to SPAs, but these are passive devices. In this paper, we offer design and control techniques for an electrically active strain limiter that is easily adhered to existing SPAs to provide signal-controlled force output. These sheathed electroadhesive (EA) clutches apply antagonistic forces through the constitutive properties of their silicone sheathing and through the variable friction of the clutch itself. We are able to design the sheathing to passively support loads or minimize passive stiffness. We control clutch forces via an augmented pulse-width-modulation (PWM) of the high voltage square-wave input. We perform an initial, empirical characterization on the system with tensile material testing. The clutch system resists motion with sustained forces ranging from 0.5N to 22N. We then demonstrate its ability to apply predictable nonconservative work in a dynamic catching task, where it can limit catching height from 15cm to 1cm. Finally, we attach it to an inverse pneumatic artificial muscle (IPAM) to show that variable strain limitation can control position of the SPA endpoint. 
    more » « less
  4. The most common sensing modalities found in a robot perception system are vision and touch, which together can provide global and highly localized data for manipulation. However, these sensing modalities often fail to adequately capture the behavior of target objects during the critical moments as they transition out of static, controlled contact with an end-effector to dynamic and uncontrolled motion. In this work, we present a novel multimodal visuotactile sensor that provides simultaneous visuotactile and proximity depth data. The sensor integrates an RGB camera and air pressure sensor to sense touch with an infrared time-of-flight (ToF) camera to sense proximity by leveraging a selectively transmissive soft membrane to enable the dual sensing modalities. We present the mechanical design, fabrication techniques, algorithm implementations, and evaluation of the sensor's tactile and proximity modalities. The sensor is demonstrated in three open-loop robotic tasks: approaching and contacting an object, catching, and throwing. The fusion of tactile and proximity data could be used to capture key information about a target object's transition behavior for sensor-based control in dynamic manipulation. 
    more » « less