skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking titanite U–Pb dates to coupled deformation and dissolution–reprecipitation
Titanite U–Pb geochronology is a promising tool to date high-temperature tectonic processes, but the extent to and mecha- nisms by which recrystallization resets titanite U–Pb dates are poorly understood. This study combines titanite U–Pb dates, trace elements, zoning, and microstructures to directly date deformation and fluid-driven recrystallization along the Coast shear zone (BC, Canada). Twenty titanite grains from a deformed calc-silicate gneiss yield U–Pb dates that range from ~ 75 to 50 Ma. Dates between ~ 75 and 60 Ma represent metamorphic crystallization or inherited detrital cores, whereas ~ 60 and 50 Ma dates reflect localized, grain-scale processes that variably recrystallized the titanite. All the analyzed titanite grains show evidence of fluid-mediated dissolution–reprecipitation, particularly at grain rims, but lack evidence of thermally mediated volume diffusion at a metamorphic temperature of > 700 °C. The younger U–Pb dates are predominantly found in bent portions of grains or fluid-recrystallized rims. These features likely formed during ductile slip and associated fluid flow along the Coast shear zone, although it is unclear whether the dates represent 10 Myr of continuous recrystallization or incomplete resetting of the titanite U–Pb system during a punctuated metamorphic event. Correlations between dates and trace-element concentrations vary, indicating that the effects of dissolution–reprecipitation decoupled U–Pb dates from trace-element concentrations in some grains. These results demonstrate that U–Pb dates from bent titanite lattices and titanite subgrains may directly date crystal-plastic deformation, suggesting that deformation microstructures enhance fluid-mediated recrystallization, and emphasize the complexity of fluid and deformation processes within and among individual grains.  more » « less
Award ID(s):
1927060
PAR ID:
10577633
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Contributions to Mineralogy and Petrology
ISSN:
1432-0967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Titanite U–Pb geochronology is a promising tool to date high-temperature tectonic processes, but the extent to and mechanisms by which recrystallization resets titanite U–Pb dates are poorly understood. This study combines titanite U–Pb dates, trace elements, zoning, and microstructures to directly date deformation and fluid-driven recrystallization along the Coast shear zone (BC, Canada). Twenty titanite grains from a deformed calc-silicate gneiss yield U–Pb dates that range from ~ 75 to 50 Ma. Dates between ~ 75 and 60 Ma represent metamorphic crystallization or inherited detrital cores, whereas ~ 60 and 50 Ma dates reflect localized, grain-scale processes that variably recrystallized the titanite. All the analyzed titanite grains show evidence of fluid-mediated dissolution–reprecipitation, particularly at grain rims, but lack evidence of thermally mediated volume diffusion at a metamorphic temperature of > 700 °C. The younger U–Pb dates are predominantly found in bent portions of grains or fluid-recrystallized rims. These features likely formed during ductile slip and associated fluid flow along the Coast shear zone, although it is unclear whether the dates represent 10 Myr of continuous recrystallization or incomplete resetting of the titanite U–Pb system during a punctuated metamorphic event. Correlations between dates and trace-element concentrations vary, indicating that the effects of dissolution–reprecipitation decoupled U–Pb dates from trace-element concentrations in some grains. These results demonstrate that U–Pb dates from bent titanite lattices and titanite subgrains may directly date crystal-plastic deformation, suggesting that deformation microstructures enhance fluid-mediated recrystallization, and emphasize the complexity of fluid and deformation processes within and among individual grains. 
    more » « less
  2. Granite textures are usually assumed to be unmodified igneous features, but titanite petrochronoloy records a progression from magmatic crystallization to fluid-mediated automorphism in the Little Cottonwood stock (LCS). The Wasatch Mountains expose a profile through the 36-25 Ma Wasatch Igneous Belt owing to 20° eastward tilt in the footwall of the Wasatch Fault. The LCS, Alta stock (AS) and their contact aureoles form an integrated magmatic-hydrothermal system that underpinned the cogenetic Keetley Volcanics (KV). The AS (~3-5 km depth) likely formed a conduit from the deeper LCS (~6-11 km) to the KV. The LCS formed in two phases: 1) ~36–33 Ma, coeval with the AS and KV, and 2) ~32–25 Ma, younger than KV and AS but at this time hydrothermal fluid infiltrated the AS­ to form endoskarn. LCS titanite was analyzed by LASS-ICP-MS in 16 samples of unaltered granite (s.l.) collected along transects from the roof on the east to the deepest exposures on the west and from the northern wall to the southern wall. Principal component analysis of titanite trace-element data distinguishes a magmatic group with high REE and a metamorphic group with low REE and high W, Sr, Sc, V, Cr, Fe, Al, and Pb. The metamorphic group forms BSE-dark rims that are variably developed but present in every sample. U-Pb dates indicate that, across the sample suite, there is nearly complete age overlap between magmatic and metamorphic titanite. We interpret chemical zoning of the titanite to record magmatic crystallization followed by hydrothermal modification of primary minerals. The age overlap suggests that solidified increments were infiltrated by fluid released by crystallization of nearby later increments. Infiltrating fluids also affected the feldspars: although apparently intact when examined optically, CL images reveal the feldspars to have been shattered, then healed by dissolution-reprecipitation. Exsolution of Ab component from K-feldspar to form albite selvages against adjacent plagioclase probably was part of the same process, as were biotite chloritization and exsolution of Ti from primary titanomagnetite to grow metamorphic titanite. Taken together, observations from titanite and major phases are consistent with fluid-mediated submagmatic re-equilibration throughout incremental assembly of the LCS. 
    more » « less
  3. The U-Pb system in titanite has been shown to be reset during a variety of high-temperature processes including high-temperature deformation, but post-deformation modification and recovery of crystal-lattice strain have so far made U-Pb equilibration mechanism from deformed titanites equivocal. Microstructures, including mechanical twinning and subgrain rotation recrystallization are more likely to be preserved at low-temperatures, but the systematics of chemical equilibration have not been established for these conditions. This study identifies progressive crystallographic misorientation and deformation twins in titanite porphyroclasts from the Wasatch Fault Zone, Utah, USA. The microstructures, mapped using electron backscatter diffraction (EBSD), developed at ~11 km depth during 300–400 ºC crystal-plastic deformation within the ductile fault zone. These microstructural maps were used to guide laser ablation-split stream ICP-MS analysis: U-Pb isotopes measured in tandem with major and trace element contents. Despite the low temperature, U-Pb and trace element contents in titanite equilibrated, at least partially, during deformation. Both major and trace elements in titanite also likely partitioned with a fluid and in response to the (re)crystallization of other mineral phases in the fault zone. Chemical zoning and crystal lattice recovery suggestive of fluid-aided recrystallization are absent, and the main mechanism for this resetting may instead be an enhancement of element mobility along microstructure dislocations. These processes are interpreted to record complex open-system behavior of titanite caused by crystal-plastic deformation during the initiation of the WFZ. This presentation will summarize the comparative analysis of microstructure by EBSD and titanite chemistry by LASS-ICP-MS, and how it bears on the understanding of elemental mobility in titanite during low-temperature crystal-plastic deformation. 
    more » « less
  4. Zircon U-Pb, and garnet Sm-Nd and Lu-Hf dates provide important constraints on local and orogenic scale processes in lower-crustal rocks. However, in high-temperature metamorphic rocks these isotopic systems typically yield significant ranges reflecting both igneous and metamorphic processes. Therefore, linking dates to specific aspects of rock history can be problematic. In Fiordland, New Zealand, granulite-facies orthogneiss is cut by leucosomes that are bordered by garnet clinopyroxene reaction zones (garnet reaction zones). In both host orthogneiss and garnet reaction zones, zircon are typically anhedral with U-Pb dates ranging from 118.30 ± 0.13 to 115.70 ± 0.18 Ma (CA-ID-TIMS) and 121.4 ± 2.0 to 109.8 ± 1.8 Ma (SHRIMP-RG). Zircon dates in host and garnet reaction zone do not define distinct populations. In addition, the dates cannot be readily grouped based on external morphology or internal CL zoning. Zircon trace-element concentrations indicate two distinct crystallization trends, clearly seen in Th and U. Garnet occurs in selvages to the leucosome veins and in the adjacent garnet reaction zones. In selvages and host orthogneiss, garnet is generally 0.5 to 1 cm diameter and euhedral and is 0.1 to 0.5 cm diameter and subhedral in garnet reaction zones. Garnet Sm-Nd and Lu-Hf dates range from ca. 115 to 101 Ma (including uncertainties) and correlate with grain size. We interpret the CA-ID-TIMS zircon dates to record the age of magma emplacement and the SHRIMP-RG dates to record a range from igneous crystallization to metamorphic dissolution and reprecipitation and/or local Pb loss. Zircon compositional trends within the garnet reaction zone and host are compatible with locally isolated melt and/or separate intrusive magma batches for the two samples described here. Dates for the largest, ~1 cm, garnet of ~113 Ma record growth during metamorphism, while the smaller grains with younger dates reflect high-temperature intracrystalline diffusion and isotopic closure during cooling. The comprehensive geochronological data set for a single location in the Malaspina Pluton illustrates a complex and protracted geologic history common in granulite facies rocks, estimates lower crustal cooling rates of ~20 °C/m.y., and underlines the importance of multiple chronometers and careful textural characterization for assigning meaningful ages to lower-crustal rocks. Numerous data sets from single locations, like the one described here, are needed to evaluate the spatial extent and variation of cooling rates for Fiordland and other lower crustal exposures. 
    more » « less
  5. Evidence of metamorphism at ultrahigh‐pressure (UHP) conditions is documented by the presence of coesite, diamond and/or majoritic garnet. However, the growth of UHP‐stable phases such as majoritic garnet is often volumetrically low, and overprinting during exhumation can obscure evidence of UHP growth, making it difficult to positively identify UHP rocks. In this study, we selected garnet‐kyanite schists from three microdiamond‐bearing localities within the Rhodope Metamorphic Complex, located in eastern Greece. Samples from Xanthi, Sidironero, and Kimi have similar bulk rock compositions, but the pressure–temperature (P–T) paths differ. Because the major phases record vanishingly little evidence of metamorphism at UHP conditions, we analyzed zircon grains with complex textures to evaluate if zircon preserves a record of UHP metamorphism. Zircon grains from all localities have cores and rims separated by a characteristic interface domain, as revealed by cathodoluminescence (CL) imaging. The detrital igneous cores range in age from c. 2.5 Ga to 220 Ma and exhibit a negative Eu* anomaly, a Yb/Gd of 10–100, and variable Th/U (0–1.2). Rims yield dates of 150–125 Ma with Yb/Gd of 0.1–10 and Th/U of 0–0.2. Interface domains yield dates 165–145 Ma with Yb/Gd ranging between 0–1000 and Th/U < 0.2. We interpret the distinctive CL textures and Yb/Gd of the interface domains as evidence of zircon that reacted at UHP. The interface domain in zircon from all petrographic contexts yields variable Yb/Gd ratios that are significantly higher than both cores and rims. We therefore interpret that zircon recrystallized via interface‐coupled dissolution–reprecipitation reaction; this process preferentially partitioned heavy rare earth elements within the interface domain, which explains the higher Yb/Gd ratios. The rim domains equilibrated with the matrix, producing a relatively homogeneous and low Yb/Gd ratio in these domains. The spatial extent and degree of preservation of interface domains are interpreted as a function of the P–T path and minor variations in bulk composition. Interface domains are best preserved in rocks from Xanthi and Sidironero; in these samples, thin, homogeneous, garnet‐stable rims only partially overprint and crosscut the interface domain. In contrast, rocks from Kimi followed a higher‐temperature trajectory and the zircon grains grew large rim domains that overprinted much of the interface domain and the detrital core. Zircon grains from plagioclase‐rich versus quartz‐rich domains within samples from Sidironero show differences in texture, which indicates that local bulk composition can affect what evidence of UHP metamorphism is preserved. Collectively, these samples provide a new, durable marker of metamorphism in UHP rocks and yield new insight about which factors affect the preservation of UHP textures. 
    more » « less