skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 10, 2026

Title: Terrestrial water storage changes in the Bug river transboundary catchment observed by GRACE and water balance analysis [ЗМІНИ ВОДНИХ РЕСУРСІВ ТРАНСКОРДОННОГО БАСЕЙНУ РІЧКИ ЗАХІДНИЙ БУГ, ВИЯВЛЕНІ НА ПІДСТАВІ СУПУТНИКОВИХ СПОСТЕРЕЖЕНЬ GRACE I ВОДНО-БАЛАНСОВИХ РОЗРАХУНКІВ]
Central and Southern Europe is undergoing a drying trend driven by increased evapotranspiration and rising air temperatures, even though precipitation levels remain stable. In the Bug River Basin, GRACE observations indicate that total water storage (TWS) declined at a rate of 8.8 ± 5.2 mm/year between 2012 and 2023. To validate this trend, we analysed spatial and temporal discrepancies between TWS-GRACE and water budget-based estimates (TWS-WB). Using ensemble data assimilation techniques, we integrated hydrometeorological data with TWS-GRACE. Regression models developed for TWS simulation were employed to adjust TWS-GRACE estimates. The results demonstrate that TWS fusion effectively mitigates uncertainties in TWS-GRACE caused by its low spatial and temporal resolution. Correlation analysis between TWS-fusion and TWS-GRACE identified errors in GRACE solutions and commonly used autoregressive methods for filling data gaps. Our findings show that model developed in this study significantly improved alignment between TWS-GRACE and TWS-WB, reducing RMSE from 34.7 to 14.9 mm/month. The proposed data fusion approach based on combining GRACE observations with precipitation, evapotranspiration, and runoff data, offers a viable alternative for extending TWS-GRACE time series beyond the GRACE observational period. Additionally, our research provides valuable insights for downscaling GRACE data and addressing challenges in spatial and temporal interpolation, which remain critical in water resource studies.  more » « less
Award ID(s):
2409395 2409396
PAR ID:
10577738
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
;
Publisher / Repository:
Meteorology Hydrology Environmental Monitoring
Date Published:
Journal Name:
Meteorology. Hydrology. Environmental monitoring
Volume:
2024
Issue:
6
ISSN:
2786-9415
Page Range / eLocation ID:
4 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global Navigation Satellite System (GNSS) vertical displacements measuring the elastic response of Earth's crust to changes in hydrologic mass have been used to produce terrestrial water storage change (∆TWS) estimates for studying both annual ∆TWS as well as multi‐year trends. However, these estimates require a high observation station density and minimal contamination by nonhydrologic deformation sources. The Gravity Recovery and Climate Experiment (GRACE) is another satellite‐based measurement system that can be used to measure regional TWS fluctuations. The satellites provide highly accurate ∆TWS estimates with global coverage but have a low spatial resolution of ∼400 km. Here, we put forward the mathematical framework for a joint inversion of GNSS vertical displacement time series with GRACE ∆TWS to produce more accurate spatiotemporal maps of ∆TWS, accounting for the observation errors, data gaps, and nonhydrologic signals. We aim to utilize the regional sensitivity to ∆TWS provided by GRACE mascon solutions with higher spatial resolution provided by GNSS observations. Our approach utilizes a continuous wavelet transform to decompose signals into their building blocks and separately invert for long‐term and short‐term mass variations. This allows us to preserve trends, annual, interannual, and multi‐year changes in TWS that were previously challenging to capture by satellite‐based measurement systems or hydrological models, alone. We focus our study in California, USA, which has a dense GNSS network and where recurrent, intense droughts put pressure on freshwater supplies. We highlight the advantages of our joint inversion results for a tectonically active study region by comparing them against inversion results that use only GNSS vertical deformation as well as with maps of ∆TWS from hydrological models and other GRACE solutions. We find that our joint inversion framework results in a solution that is regionally consistent with the GRACE ∆TWS solutions at different temporal scales but has an increased spatial resolution that allows us to differentiate between regions of high and low mass change better than using GRACE alone. 
    more » « less
  2. Abstract GRACE (Gravity Recovery and Climate Experiment) has been widely used to evaluate terrestrial water storage (TWS) and groundwater storage (GWS). However, the coarse‐resolution of GRACE data has limited the ability to identify local vulnerabilities in water storage changes associated with climatic and anthropogenic stressors. This study employs high‐resolution (1 km2) GRACE data generated through machine learning (ML) based statistical downscaling to illuminate TWS and GWS dynamics across twenty sub‐regions in the Indus Basin. Monthly TWS and GWS anomalies obtained from a geographically weighted random forest (RFgw) model maintained good consistency with original GRACE data at the 25 km2grid scale. The downscaled data at 1 km2resolution illustrate the spatial heterogeneity of TWS and GWS depletion within each sub‐region. Comparison with in‐situ GWS from 2,200 monitoring wells shows that downscaling of GRACE data significantly improves agreement with in‐situ data, evidenced by higher Kling‐Gupta Efficiency (0.50–0.85) and correlation coefficients (0.60–0.95). Hotspots with the highest TWS and GWS decline rate between 2002 and 2023 were Dehli Doab (−442, −585 mm/year), BIST Doab (−367, −556 mm/year), Rajasthan (−242, −381 mm/year), and BARI (−188, −333 mm/year). Based on a general additive model, 47%–83% of the TWS decline was associated with anthropogenic stressors mainly due to increasing trends of crop sown area, water consumption, and human settlements. The decline rate of TWS and GWS anomalies was lower (i.e., −25 to −75 mm/year) in upstream sub‐regions (e.g., Yogo, Gilgit, Khurmong, Kabul) where climatic factors (downward shortwave radiations, air temperature, and sea surface temperature) explained 72%–91% of TWS/GWS changes. The relative influences of climatic and anthropogenic stressors varied across sub‐regions, underscoring the complex interplay of natural‐human activities in the basin. These findings inform place‐based water resource management in the Indus Basin by advancing the understanding of local vulnerabilities. 
    more » « less
  3. Zhang, Kai (Ed.)
    Realistic representation of hydrological drought events is increasingly important in world facing decreased freshwater availability. Index-based drought monitoring systems are often adopted to represent the evolution and distribution of hydrological droughts, which mainly rely on hydrological model simulations to compute these indices. Recent studies, however, indicate that model derived water storage estimates might have difficulties in adequately representing reality. Here, a novel Markov Chain Monte Carlo - Data Assimilation (MCMC-DA) approach is implemented to merge global Terrestrial Water Storage (TWS) changes from the Gravity Recovery And Climate Experiment (GRACE) and its Follow On mission (GRACE-FO) with the water storage estimations derived from the W3RA water balance model. The modified MCMC-DA derived summation of deep rooted soil and groundwater storage estimates is then used to compute 0.5∘ standardized groundwater drought indices globally to show the impact of GRACE/GRACE-FO DA on a global index-based hydrological drought monitoring system. Our numerical assessment covers the period of 2003–2021, and shows that integrating GRACE/GRACE-FO data modifies the seasonality and inter-annual trends of water storage estimations. Considerable increases in the length and severity of extreme droughts are found in basins that exhibited multiyear water storage fluctuations and those affected by climate teleconnections. 
    more » « less
  4. Abstract Data and knowledge of the spatial-temporal dynamics of surface water area (SWA) and terrestrial water storage (TWS) in China are critical for sustainable management of water resources but remain very limited. Here we report annual maps of surface water bodies in China during 1989–2016 at 30m spatial resolution. We find that SWA decreases in water-poor northern China but increases in water-rich southern China during 1989–2016. Our results also reveal the spatial-temporal divergence and consistency between TWS and SWA during 2002–2016. In North China, extensive and continued losses of TWS, together with small to moderate changes of SWA, indicate long-term water stress in the region. Approximately 569 million people live in those areas with deceasing SWA or TWS trends in 2015. Our data set and the findings from this study could be used to support the government and the public to address increasing challenges of water resources and security in China. 
    more » « less
  5. Abstract Eurasia, home to ~70% of global population, is characterized by (semi-)arid climate. Water scarcity in the mid-latitude Eurasia (MLE) has been exacerbated by a consistent decline in terrestrial water storage (TWS), attributed primarily to human activities. However, the atmospheric mechanisms behind such TWS decline remain unclear. Here, we investigate teleconnections between drying in low-latitude North Atlantic Ocean (LNATO) and TWS depletions across MLE. We elucidate mechanistic linkages and detecte high correlations between decreased TWS in MLE and the decreased precipitation-minus-evapotranspiration (PME) in LNATO. TWS in MLE declines by ~257% during 2003-2017 due to northeastward propagation of PME deficit following two distinct seasonal landfalling routes during January-May and June-January. The same mechanism reduces TWS during 2031-2050 by ~107% and ~447% under scenarios SSP245 and SSP585, respectively. Our findings highlight the risk of increased future water scarcity across MLE caused by large-scale climatic drivers, compounding the impacts of human activities. 
    more » « less