skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Narrow-bandgap titanium sesquioxide with resonant metasurfaces for enhanced infrared absorption
We report on the structural, chemical, and optical properties of titanium sesquioxide Ti2O3 thin films on single-crystal sapphire substrates by pulsed laser deposition. The thin film of Ti2O3 on sapphire exhibits light absorption of around 25%–45% in the wavelength range of 2–10 μm. Here, we design an infrared photodetector structure based on Ti2O3, enhanced by a resonant metasurface, to improve its light absorption in mid-wave and long-wave infrared windows. We show that light absorption in the mid-wave infrared window (wavelength 3–5 μm) in the active Ti2O3 layer can be significantly enhanced from 30%–40% to more than 80% utilizing a thin resonant metasurface made of low-loss silicon, facilitating efficient scattering in the active layer. Furthermore, we compare the absorptance of the Ti2O3 layer with that of conventional semiconductors, such as InSb, InAs, and HgCdTe, operating in the infrared range with a wavelength of 2–10 μm and demonstrate that the absorption in the Ti2O3 film is significantly higher than in these conventional semiconductors due to the narrow-bandgap characteristics of Ti2O3. The proposed designs can be used to tailor the wavelengths of photodetection across the near- and mid-infrared ranges.  more » « less
Award ID(s):
2418519
PAR ID:
10577861
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
125
Issue:
26
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiral metamaterials in the mid-infrared wavelength range have tremendous potential for studying thermal emission manipulation and molecular vibration sensing. Here, we present one type of chiral plasmonic metasurface absorber with high circular dichroism (CD) in absorption of more than 0.56 across the mid-infrared wavelength range of 5–5.5 µm. The demonstrated chiral metasurface absorbers exhibit a maximum chiral absorption of 0.87 and a maximum CD in absorption of around 0.60. By adjusting the geometric parameters of the unit cell structure of the metasurface, the chiral absorption peak can be shifted to different wavelengths. Due to the strong chiroptical response, the thermal analysis of the designed chiral metasurface absorber further shows the large temperature difference between the left-handed and right-handed circularly polarized light. The demonstrated results can be utilized in various applications such as molecular detection, mid-infrared filter, thermal emission, and chiral imaging. 
    more » « less
  2. Photodetection spanning the short-, mid-, and long-wave infrared (SWIR-LWIR) underpins modern science and technology. Devices using state-of-the-art narrow bandgap semiconductors require complex manufacturing, high costs, and cooling requirements that remain prohibitive for many applications. We report high-performance infrared photodetection from a donor-acceptor conjugated polymer with broadband SWIR-LWIR operation. Electronic correlations within the π-conjugated backbone promote a high-spin ground state, narrow bandgap, long-wavelength absorption, and intrinsic electrical conductivity. These previously unobserved attributes enabled the fabrication of a thin-film photoconductive detector from solution, which demonstrates specific detectivities greater than 2.10 × 10 9 Jones. These room temperature detectivities closely approach those of cooled epitaxial devices. This work provides a fundamentally new platform for broadly applicable, low-cost, ambient temperature infrared optoelectronics. 
    more » « less
  3. The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window. 
    more » « less
  4. Heterogeneous photocatalysis is an important research problem relevant to a variety of sustainable energy technologies. However, obtaining high photocatalytic efficiency from visible light absorbing semiconductors is challenging due to a combination of weak absorption, transport losses, and low activity. Aspects of this problem have been addressed by multilayer approaches, which provide a general scheme for engineering surface reactivity and stability independent of electronic considerations. However, an analogous broad framework for optimizing light–matter interactions has not yet been demonstrated. Here, we establish a photonic approach using semiconductor metasurfaces that is highly effective in enhancing the photocatalytic activity of GaAs, a high-performance semiconductor with a near-infrared bandgap. Our engineered pillar arrays with heights of ∼150 nm exhibit Mie resonances near 700 nm that result in near-unity absorption and exhibit a field profile that maximizes charge carrier generation near the solid–liquid interface, enabling short transport distances. Our hybrid metasurface photoanodes facilitate oxygen evolution and exhibit enhanced incident photon-to-current efficiencies that are ∼22× larger than a corresponding thin film for resonant excitation and 3× larger for white light illumination. Key to these improvements is the preferential generation of photogenerated carriers near the semiconductor interface that results from the field enhancement profile of magnetic dipolar-type modes. 
    more » « less
  5. Applying coatings that suppress the radiance changes related to temperature-dependent blackbody emission enables temperature-independent optical and sensing systems. Phase-change materials can significantly modify their optical properties within their transition window, but compensating for the large mid-wave infrared (MWIR, 3–5 µm) variation is demanding: blackbody radiance at 3 µm increases nearly 10-fold as the temperature rises from 30 °C to 80 °C. Vanadium dioxide VO2, whose insulator–metal transition offers a sharp contrast and a low-loss insulating state, is attractive for applications in thermal management, but simple thin-film designs cannot provide full compensation. We demonstrate metasurface coatings that provide this compensation by constructing an array of metal–VO2–metal antennas tuned to maintain constant thermal emission at a target wavelength over a temperature range of 30 °C to 80 °C. Antennas of several lateral sizes are combined, so their individual resonances collectively track the Planck change. This design provides both optical contrast and the correct temperature derivative, which are unattainable with homogeneous layers. Our approach results in a negligible apparent temperature change of the metasurface across the 30–80 °C range, effectively masking thermal signatures from MWIR detectors stemming from the low losses of VO2. 
    more » « less