skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband infrared photodetection using a narrow bandgap conjugated polymer
Photodetection spanning the short-, mid-, and long-wave infrared (SWIR-LWIR) underpins modern science and technology. Devices using state-of-the-art narrow bandgap semiconductors require complex manufacturing, high costs, and cooling requirements that remain prohibitive for many applications. We report high-performance infrared photodetection from a donor-acceptor conjugated polymer with broadband SWIR-LWIR operation. Electronic correlations within the π-conjugated backbone promote a high-spin ground state, narrow bandgap, long-wavelength absorption, and intrinsic electrical conductivity. These previously unobserved attributes enabled the fabrication of a thin-film photoconductive detector from solution, which demonstrates specific detectivities greater than 2.10 × 10 9 Jones. These room temperature detectivities closely approach those of cooled epitaxial devices. This work provides a fundamentally new platform for broadly applicable, low-cost, ambient temperature infrared optoelectronics.  more » « less
Award ID(s):
1757220
PAR ID:
10335944
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
24
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Photodetectors operating across the near‐ to short‐wave infrared (NIR–SWIR,λ= 0.9–1.8 µm) underpin modern science, technology, and society. Organic photodiodes (OPDs) based on bulk‐heterojunction (BHJ) active layers overcome critical manufacturing and operating drawbacks inherent to crystalline inorganic semiconductors, offering the potential for low‐cost, uncooled, mechanically compliant, and ubiquitous infrared technologies. A constraining feature of these narrow bandgap materials systems is the high noise current under an applied bias, resulting in specific detectivities (D*, the figure of merit for detector sensitivity) that are too low for practical utilization. Here, this study demonstrates that incorporating wide‐bandgap insulating polymers within the BHJ suppresses noise by diluting the transport and trapping sites as determined using capacitance‐frequency analysis. The resultingD*of NIR–SWIR OPDs operating from 600–1400 nm under an applied bias of −2 V is improved by two orders of magnitude, from 108to 1010 Jones (cm Hz1/2 W−1), when incorporating polysulfone within the blends. This broadly applicable strategy can reduce noise in IR‐OPDs enabling their practical operation and the realization of emerging technologies. 
    more » « less
  2. Abstract While only few organic photodiodes have photoresponse past 1 µm, novel shortwave infrared (SWIR) polymers are emerging, and a better understanding of the limiting factors in narrow bandgap devices is critically needed to predict and advance performance. Based on state‐of‐the‐art SWIR bulk heterojunction photodiodes, this work demonstrates a model that accounts for the increasing electric‐field dependence of photocurrent in narrow bandgap materials. This physical model offers an expedient method to pinpoint the origins of efficiency losses, by decoupling the exciton dissociation efficiency and charge collection efficiency in photocurrent–voltage measurements. These results from transient photoconductivity measurements indicate that the main loss is due to poor exciton dissociation, particularly significant in photodiodes with low‐energy charge‐transfer states. Direct measurements of the noise components are analyzed to caution against using assumptions that could lead to an overestimation of detectivity. The devices show a peak detectivity of 5 × 1010Jones with a spectral range up to 1.55 µm. The photodiodes are demonstrated to quantify the ethanol–water content in a mixture within 1% accuracy, conveying the potential of organics to enable economical, scalable detectors for SWIR spectroscopy. 
    more » « less
  3. We experimentally demonstrate a low-cost transfer process of GeSn ribbons to insulating substrates for short-wave infrared (SWIR) sensing/imaging applications. By releasing the original compressive GeSn layer to nearly fully relaxed state GeSn ribbons, the room-temperature spectral response of the photodetector is further extended to 3.2 μm, which can cover the entire SWIR range. Compared with the as-grown GeSn reference photodetectors, the fabricated GeSn ribbon photodetectors have a fivefold improvement in the light-to-dark current ratio, which can improve the detectivity for high-performance photodetection. The transient performance of a GeSn ribbon photodetector is investigated with a rise time of about 40 μs, which exceeds the response time of most GeSn (Ge)-related devices. In addition, this transfer process can be applied on various substrates, making it a versatile technology that can be used for various applications ranging from optoelectronics to large-area electronics. These results provide insightful guidance for the development of low-cost and high-speed SWIR photodetectors based on Sn-containing group IV low-dimensional structures. 
    more » « less
  4. Abstract Space missions critically rely on sensors that operate throughout the near‐ to longwave infrared (NIR – LWIR, λ = 0.9–14 µm) regions of the electromagnetic spectrum. These sensors capture data beyond the capabilities of traditional optical tools and sensors, critical for the detection of thermal emissions, conducting atmospheric studies, and surveillance. However, conventional NIR‐LWIR detectors depend on bulky, cryogenically cooled semiconductors, making them impractical for broader space‐based applications due to their high cost, size, weight, and power (C‐SWaP) demands. Here, an IR photodetector using a solution‐processed narrow bandgap conjugated polymer is demonstrated. This direct bandgap photoconductor demonstrates exceptional infrared sensitivity without cooling and has minimal changes in figures‐of‐merit after substantial ionizing radiation exposure up to 1,000 krad – equivalent to three years in the most intense low Earth orbit (LEO). Its performance and resilience to radiation notably surpass conventional inorganic detectors, with a 7.7 and 98‐fold increase in radiation hardness when compared to epitaxial mercury cadmium telluride (HgCdTe) and indium gallium arsenide (InGaAs) photodiodes, respectively, offering a more affordable, compact, and energy‐efficient alternative. This class of organic semiconductors provides a new frontier for C‐SWaP optimized IR space sensing technologies, enabling the development of new spacecraft and missions with enhanced observational capabilities. 
    more » « less
  5. We design and characterize compact phase-modulated axilens devices that combine efficient point focusing and grating selectivity within four-level phase mask configurations. Specifically, we select and characterize in detail two device configurations designed for long-wavelength infrared (LWIR) operation in the 6 µ<#comment/> m −<#comment/> 12 µ<#comment/> m wavelength range. These devices are ideally suited for monolithic integration atop the substrate layers of infrared focal plane arrays (IR-FPAs) for use in multiband LWIR photodetection. We systematically study their focusing efficiency, spectral response, and crosstalk ratio, and we demonstrate a single-component microspectrometer. Our design method leverages the Rayleigh–Sommerfeld (RS) diffraction theory that is validated numerically using the finite element method (FEM). The proposed devices are broadband and polarization insensitive and add fundamental spectroscopic capabilities to miniaturized optical components for a number of applications in LWIR detection and spectroscopy. 
    more » « less