The rise of deep neural networks offers new opportunities in optimizing recommender systems. However, optimizing recommender systems using deep neural networks requires delicate architecture fabrication. We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing. To overcome the data multi-modality and architecture heterogeneity challenges in the recommendation domain, NASRec establishes a large supernet (i.e., search space) to search the full architectures. The supernet incorporates versatile choice of operators and dense connectivity to minimize human efforts for finding priors. The scale and heterogeneity in NASRec impose several challenges, such as training inefficiency, operator-imbalance, and degraded rank correlation. We tackle these challenges by proposing single-operator any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning. Our crafted models, NASRecNet, show promising results on three Click-Through Rates (CTR) prediction benchmarks, indicating that NASRec outperforms both manually designed models and existing NAS methods with state-of-the-art performance. Our work is publicly available here.
more »
« less
This content will become publicly available on December 9, 2025
Towards Automated Model Design on Recommender Systems
The increasing popularity of deep learning models has created new opportunities for developing AI-based recommender systems. Designing recommender systems using deep neural networks requires careful architecture design, and further optimization demands extensive co-design efforts on jointly optimizing model architecture and hardware. Design automation, such as Automated Machine Learning (AutoML), is necessary to fully exploit the potential of recommender model design, including model choices and model-hardware co-design strategies. We introduce a novel paradigm that utilizes weight sharing to explore abundant solution spaces. Our paradigm creates a large supernet to search for optimal architectures and co-design strategies to address the challenges of data multi-modality and heterogeneity in the recommendation domain. From a model perspective, the supernet includes a variety of operators, dense connectivity, and dimension search options. From a co-design perspective, it encompasses versatile Processing-In-Memory (PIM) configurations to produce hardware-efficient models. Our solution space’s scale, heterogeneity, and complexity pose several challenges, which we address by proposing various techniques for training and evaluating the supernet. Our crafted models show promising results on three Click-Through Rates (CTR) prediction benchmarks, outperforming both manually designed and AutoML-crafted models with state-of-the-art performance when focusing solely on architecture search. From a co-design perspective, we achieve 2 × FLOPs efficiency, 1.8 × energy efficiency, and 1.5 × performance improvements in recommender models.
more »
« less
- PAR ID:
- 10577862
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Recommender Systems
- ISSN:
- 2770-6699
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Low-latency and low-power edge AI is crucial for Virtual Reality and Augmented Reality applications. Recent advances demonstrate that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve a superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can present system challenges for latency and energy efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and explore diverse execution schemas to efficiently execute these hybrid models. We introduce H4H-NAS, a two-stage Neural Architecture Search (NAS) framework to automate the design of efficient hybrid CNN/ViT models for heterogeneous edge systems featuring both NPU and CIM. We propose a two-phase incremental supernet training in our NAS framework to resolve gradient conflicts between sampled subnets caused by different types of blocks in a hybrid model search space. Our H4H-NAS approach is also powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN-ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet. Moreover, results from our algorithm/hardware co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing heterogeneous computing over baseline solutions. Overall, our framework guides the design of hybrid network architectures and system architectures for NPU+CIM heterogeneous systems.more » « less
-
AutoML has demonstrated remarkable success in finding an effective neural architecture for a given machine learning task defined by a specific dataset and an evaluation metric. However, most present AutoML techniques consider each task independently from scratch, which requires exploring many architectures, leading to high computational costs. We proposed AutoTransfer, an AutoML solution that improves search efficiency by transferring the prior architectural design knowledge to the novel task of interest. Our key innovation includes a task-model bank that captures the model performance over a diverse set of GNN architectures and tasks, and a computationally efficient task embedding that can accurately measure the similarity among different tasks. Based on the task-model bank and the task embeddings, our method estimates the design priors of desirable models of the novel task, by aggregating a similarity-weighted sum of the top-K design distributions on tasks that are similar to the task of interest. The computed design priors can be used with any AutoML search algorithm. We evaluated AutoTransfer on six datasets in the graph machine learning domain. Experiments demonstrate that (i) our proposed task embedding can be computed efficiently, and that tasks with similar embeddings have similar best-performing architectures; (ii) AutoTransfer significantly improves search efficiency with the transferred design priors, reducing the number of explored architectures by an order of magnitude. Finally, we released GNN-BANK-101, a large-scale dataset of detailed GNN training information of 120,000 task-model combinations to facilitate and inspire future research.more » « less
-
null (Ed.)Artificial neural networks (NNs) in deep learning systems are critical drivers of emerging technologies such as computer vision, text classification, and natural language processing. Fundamental to their success is the development of accurate and efficient NN models. In this article, we report our work on Deep-n-Cheap—an open-source automated machine learning (AutoML) search framework for deep learning models. The search includes both architecture and training hyperparameters and supports convolutional neural networks and multi-layer perceptrons, applicable to multiple domains. Our framework is targeted for deployment on both benchmark and custom datasets, and as a result, offers a greater degree of search space customizability as compared to a more limited search over only pre-existing models from literature. We also introduce the technique of ‘search transfer’, which demonstrates the generalization capabilities of the models found by our framework to multiple datasets. Deep-n-Cheap includes a user-customizable complexity penalty which trades off performance with training time or number of parameters. Specifically, our framework can find models with performance comparable to state-of-the- art while taking 1–2 orders of magnitude less time to train than models from other AutoML and model search frameworks. Additionally, we investigate and develop insight into the search process that should aid future development of deep learning models.more » « less
-
The ability to automatically generate a neural network architecture and the corresponding hardware implementation to optimize both accuracy and performance characteristics (latency, power) simultaneously for edge-based Artificial Intelligence (AI) applications is becoming prevalent. As both neural architecture search (NAS) and hardware implementation have ample design space, it is very challenging to integrate with resource-constrained edge computing hardware since the current co-search frameworks take several hundreds of GPU hours to converge. In this paper, we propose SCORCH, a novel neural architecture search and hardware accelerator co-design framework with reinforcement learning to maximize accuracy, and increase energy efficiency and throughput while converging faster. By predicting hyperparameters of neural networks together with hardware resources, we use a reinforcement-based multi-phased controller to explore neural architecture to achieve higher accuracy and hardware performance simultaneously by applying customized dataflows, voltage/frequency scaling, and tunable Network-on-Chip (NoC) hardware parameters. Our simulation results on the CIFAR-10/100 and ImageNet datasets show that SCORCH achieves identical neural network accuracy while achieving 2.6% higher accuracy, and 35.6%, 26.2%, and 65.8% reductions in latency, energy, and area compared with state-of-art co-search frameworks such as DANCE, NANDS, and NASAIC.more » « less
An official website of the United States government
