A<sc>bstract</sc> Heritable microbes shape host phenotypes and are important drivers of evolution. While interactions between insects and bacterial symbionts have been extensively studied, the prevalence and consequences of insect-viral symbiosis are an open question. We show that viral symbionts in the familyIflaviridaeare widespread among aphids, an important model for research on bacterial symbiosis. We discovered multiple new species of iflaviruses that are maintained in asexual lines without apparent fitness costs and are transmitted vertically from mothers to offspring. Using field data and phylogenetic evidence, we further show that aphid iflaviruses likely move horizontally across species, but through laboratory experiments, we demonstrated that horizontal transfer among species infesting the same host plants does not persist throughout clonal lineages. Using quantitative PCR and immunohistochemistry, we discovered that viral infections localize in the host fat bodies and developing embryos. Surprisingly, we also found viral infections inside bacteria-housing cells called bacteriocytes, with a positive correlation between viral and bacterial symbiont density, indicating a mechanism for vertical transmission. Together, our work suggests that iflaviruses are an important but previously unrecognized piece of aphid symbiosis and sets the stage to use this model to answer new questions about host-microbe associations. I<sc>mportance</sc>In recent years, the rise of metatranscriptome sequencing has led to the rapid discovery of novel viral sequences in insects. However, few studies have carefully investigated the dynamics of insect-virus interactions to produce a general understanding of viral symbiosis. Aphids are a significant agricultural pest but also an important model for understanding the evolution of host-microbe interactions and the molecular basis of bacterial symbiosis. We show that heritable iflaviruses are an important but previously unrecognized part of the aphid heritable microbiome, with viral symbionts transmitted alongside bacteria from mothers to offspring, potentially via specialized bacteriocytes that house symbiotic microbes. Our findings have important implications for furthering the understanding of insect-microbe symbiosis and the potential for biocontrol of agriculturally relevant pest species.
more »
« less
Draft genome sequence of the glasshouse-potato aphid Aulacorthum solani
Abstract Aulacorthum solani is a worldwide agricultural pest aphid capable of feeding on a wide range of host plants. This insect is a vector of plant viruses and causes injury to crops including stunted growth from the loss of phloem. We found that the publicly available genome for A. solani is contaminated with another aphid species, and we produced a new genome using a barcoded isogenic laboratory line. We generated Oxford Nanopore and Illumina reads to assemble a draft genome, and we sequenced RNA to aid in the annotation of our assembly. Our A. solani genome is 671 Mb containing 7,020 contigs with an N50 length of 196 kb with a BUSCO completeness of 98.6%. Out of the 24,981 genes predicted by EGAPx, 22,804 were annotated with putative functions based on homology to other aphid species. This genome will provide a useful resource for the community of researchers studying aphids from agricultural and genomic perspectives.
more »
« less
- PAR ID:
- 10577974
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- G3: Genes, Genomes, Genetics
- Volume:
- 15
- Issue:
- 3
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundInsects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. MethodsIn this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphidMacrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly forM. euphorbiaeusing Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. ResultsWe found reads from two insect-specific viruses (aFlavivirusand anAmbidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the ‘virome’ of this insect can be attributed to EVEs in the host genome. ConclusionOur work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.more » « less
-
The Fusarium solani species complex (FSSC) is a clade of environmentally ubiquitous fungi that includes plant, animal, and insect associates. Here, we report the draft genome sequence of the undescribed species FSSC 6 (isolate MYA-4552), housed in the gut of the wood-boring cerambycid beetle Anoplophora glabripennis .more » « less
-
McIntyre, L (Ed.)Abstract The adelgids (Adelgidae) are a small family of sap-feeding insects, which, together with true aphids (Aphididae) and phylloxerans (Phylloxeridae), make up the infraorder Aphidomorpha. Some adelgid species are highly destructive to forest ecosystems such as Adelges tsugae, Adelges piceae, Adelges laricis, Pineus pini, and Pineus boerneri. Despite this, there are no high-quality genomic resources for adelgids, hindering advanced genomic analyses within Adelgidae and among Aphidomorpha. Here, we used PacBio continuous long-read and Illumina RNA-sequencing to construct a high-quality draft genome assembly for the Cooley spruce gall adelgid, Adelges cooleyi (Gillette), a gall-forming species endemic to North America. The assembled genome is 270.2 Mb in total size and has scaffold and contig N50 statistics of 14.87 and 7.18 Mb, respectively. There are 24,967 predicted coding sequences, and the assembly completeness is estimated at 98.1 and 99.6% with core BUSCO gene sets of Arthropoda and Hemiptera, respectively. Phylogenomic analysis using the A. cooleyi genome, 3 publicly available adelgid transcriptomes, 4 phylloxera transcriptomes, the Daktulosphaira vitifoliae (grape phylloxera) genome, 4 aphid genomes, and 2 outgroup coccoid genomes fully resolves adelgids and phylloxerans as sister taxa. The mitochondrial genome is 24 kb, among the largest in insects sampled to date, with 39.4% composed of noncoding regions. This genome assembly is currently the only genome-scale, annotated assembly for adelgids and will be a valuable resource for understanding the ecology and evolution of Aphidomorpha.more » « less
-
Abstract PremisePolyploidy is a widespread mutational process in angiosperms that may alter population performance of not only plants but also their interacting species. Yet, knowledge of whether polyploidy affects plant–herbivore dynamics is scarce. Here, we tested whether aphid herbivores exhibit preference for diploid or neopolyploid plants, whether polyploidy impacts plant and herbivore performance, and whether these interactions depend on the plant genetic background. MethodsUsing independently synthesized neotetraploid strains paired with their diploid progenitors of greater duckweed (Spirodela polyrhiza), we evaluated the effect of neopolyploidy on duckweed's interaction with the water‐lily aphid (Rhopalosiphum nymphaeae). Using paired‐choice experiments, we evaluated feeding preference of the herbivore. We then evaluated the consequences of polyploidy on aphid and plant performance by measuring population growth over multiple generations. ResultsAphids preferred neopolyploids when plants were provided at equal abundances but not at equal surface areas, suggesting the role of plant population surface area in driving this preference. Additionally, neopolyploidy increased aphid population performance, but this result was dependent on the plant's genetic lineage. Lastly, the impact of herbivory on neopolyploid vs. diploid duckweed varied greatly with genetic lineage, where neopolyploids appeared to be variably tolerant compared to diploids, sometimes mirroring the effect on herbivore performance. ConclusionsBy experimentally testing the impacts of polyploidy on trophic species interactions, we showed that polyploidization can impact the preference and performance of herbivores on their plant hosts. These results have significant implications for the establishment and persistence of plants and herbivores in the face of plant polyploidy.more » « less
An official website of the United States government
