Abstract Many critical drivers of ecological systems exhibit regular scaling relationships, yet the underlying mechanisms explaining these relationships are often unknown. Trophic interaction strengths, which underpin ecosystem stability and dynamics, are no exception, exhibiting statistical scaling relationships with predator and prey traits that lack causal, evolutionary explanations. Here we propose two universal rules to explain the scaling of trophic interaction strengths through the relationship between a predator’s feeding rate and its prey’s density --- the so-called predator functional response. First, functional responses must allow predators to meet their energetic demands when prey are rare. Second, functional responses should approach their maxima near the highest prey densities that predators experience. We show that independently parameterized mathematical equations derived from these two rules predict functional response parameters across over 2,100 functional response experiments. The rules further predict consistent patterns of feeding rate saturation among predators, a slow-fast continuum among functional response parameters, and the allometric scaling of those parameters. The two rules thereby offer a potential ultimate explanation for the determinants of trophic interaction strengths and their scaling, revealing the importance of ecologically realized constraints to the complex, adaptive nature of functional response evolution. 
                        more » 
                        « less   
                    
                            
                            Predator feeding rates may often be unsaturated under typical prey densities
                        
                    
    
            Abstract Predator feeding rates (described by their functional response) must saturate at high prey densities. Although thousands of manipulative functional response experiments show feeding rate saturation at high densities under controlled conditions, it remains unclearhowsaturated feeding rates are at natural prey densities. The general degree of feeding rate saturation has important implications for the processes determining feeding rates and how they respond to changes in prey density. To address this, we linked two databases—one of functional response parameters and one on mass–abundance scaling—through prey mass to calculate a feeding rate saturation index. We find that: (1) feeding rates may commonly be unsaturated and (2) the degree of saturation varies with predator and prey taxonomic identities and body sizes, habitat, interaction dimension and temperature. These results reshape our conceptualisation of predator–prey interactions in nature and suggest new research on the ecological and evolutionary implications of unsaturated feeding rates. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2129758
- PAR ID:
- 10578131
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 1461-023X
- Page Range / eLocation ID:
- 302 to 312
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ecologists differ in the degree to which they consider the linear Type I functional response to be an unrealistic versus sufficient representation of predator feeding rates. Empiricists tend to consider it unsuitably non-mechanistic and theoreticians tend to consider it necessarily simple. Holling’s original rectilinear Type I response is dismissed by satisfying neither desire, with most compromising on the smoothly saturating Type II response for which searching and handling are assumed to be mutually exclusive activities. We derive a “multiple-prey-at-a-time” response and a generalization that includes the Type III to reflect predators that can continue to search when handling an arbitrary number of already-captured prey. The multi-prey model clarifies the empirical relevance of the linear and rectilinear models and the conditions under which linearity can be a mechanistically-reasoned description of predator feeding rates, even when handling times are long. We find support for linearity in 35% of 2,591 compiled empirical datasets and support for the hypothesis that larger predator-prey body-mass ratios permit predators to search while handling greater numbers of prey. Incorporating the multi-prey response into the Rosenzweig-MacArthur population-dynamics model reveals that a non-exclusivity of searching and handling can lead to coexistence states and dynamics that are not anticipated by theory built on the Type I, II, or III response models. In particular, it can lead to bistable fixed-point and limit-cycle dynamics with long-term crawl-by transients between them under conditions where abundance ratios reflect top-heavy food webs and the functional response is linear. We conclude that functional response linearity should not be considered empirically unrealistic but also that more cautious inferences should be drawn in theory presuming the linear Type I to be appropriate.more » « less
- 
            Abstract Predator–prey coupling can result in oscillations of predator–prey densities. These oscillations in predator–prey densities correspond to oscillations in intraspecific competition where a high population density causes high intraspecific competition. Strong coupling of native species can however be disrupted by the introduction of invasive species into food webs. Here, we investigated how the body condition (body mass relative to body length) of a predator, lake trout, and its primary prey, cisco, changed as their respective population densities shifted. We found that the body condition of lake trout and cisco was strongly influenced by their respective population densities, that is, density dependence. The body conditions of lake trout and cisco were also inversely related, which highlights strong predator–prey coupling. Further, we were able to detect the impacts of a recent invasive species,Bythotrephes, as we saw size‐specific shifts in the body condition of prey following the invasion. Overall, this study highlights how the long‐term study of a simple measure, body condition, can reveal predator–prey coupling and yield new insights into the impacts of an invasive species.more » « less
- 
            A substantial component of phytoplankton production in the oceans is channeled through protistan grazers but understanding what dictates the magnitude of this process on a regional and temporal basis is limited, in part, by a shortage of experimental options. A novel saturation approach based on the functional response of planktonic grazers to increasing prey abundance was developed using laboratory cultures of the predator-prey combination of Ochromonas danica and Micromonas pusilla and tested in the coastal waters of the Gulf of Maine. In incubation series, 2 μm polystyrene microspheres were used as surrogate prey to generate increasing levels of saturation of predator ingestion rates of natural prey, resulting in increased rates of apparent growth of the picophytoplankton populations. The relationship between level of addition of surrogate prey to apparent growth, consistently provided significant estimates of maximal growth in the absence of grazing and grazing mortality for populations of picoeukaryotes and Synechococcus . Estimates of gross growth and grazing mortality were comparable to results from dilution experiments carried out in the same waters. The saturation approach represents an additional tool to investigate predator-prey interactions in planktonic communities. Further investigations may show that it can be used to quantify group-specific grazing mortality and growth rates beyond coastal waters and in multiple size classes of prey.more » « less
- 
            Ecological niches are pivotal in addressing questions of species richness gradients like the Latitudinal Diversity Gradient (LDG). The Hutchinsonian niche hypervolume model and derivatives are some of the most proven tools. Accordingly, species occupy mathematically convenient spaces in relation to functional, especially trophic, relationships, as well as the physical environment. In one application, the number of species in a community is a function of average niche sizes, overlaps, and total niche volume. Alternatively, the number of coexisting species derives from invasibility criteria in relation to species-interaction modules. The daunting complexity of tropical communities begs the question of how well these ecologically inspired paradigms accommodate present knowledge of species interactions and functional relationships. Recent studies of hyperdiverse tropical insectivorous bird species suggests reevaluating the applicability of such concepts. Here I review Neotropical, arthropod-feeding bird species interactions needed to explain these species’ trophic relationships, including their diets, feeding substrates, and behavioral and morphological traits relevant to resource acquisition. Important emergent generalizations include extraordinary specializations on both prey resource locations (substrates) and behaviors, rather than on particular resourcesper se, and a preponderance of adaptations to exploit the anti-predator traits of prey, traits evolved in response to other predators. These specializations and implicit arms races necessitate evolutionary approaches to niches necessary to understand the relevant natural history and ecology, how these species compete interspecifically, and even how these predator species interact with preyviaevolutionary enhancements. These findings, compared and contrasted with prevailing concepts and findings, suggest expanding niche concepts to accommodate both the large temporal and regional geographic scales to understand the accumulated species richness of the mainland Neotropics. These trophic specializations also highlight why many of these birds are so sensitive to human disturbances, especially habitat loss, fragmentation, and degradation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    