skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variable-Capacity Operations with Modular Transits for Shared-Use Corridors
Since passenger demand in urban transit systems is asymmetrically distributed across different periods in a day and different geographic locations across the cities, the tradeoff between vehicle operating costs and service quality has been a persistent problem in transit operational design. The emerging modular vehicle technology offers us a new perspective to solve this problem. Based on this concept, we propose a variable-capacity operation approach with modular transits for shared-use corridors, in which both dispatch headway and vehicle capacity are decision variables. This problem is rigorously formulated as a mixed integer linear programming model that aims to minimize the overall system cost, including passenger waiting time costs and vehicle operating costs. Because the proposed model is linear, the state-of-the-art commercial solvers (e.g., Gurobi) can be used to obtain the optimal solution of the investigated problem. With numerical experiments, we demonstrate the feasibility of the mathematical model, verify the effectiveness of the proposed model in reducing overall system costs in transit systems, as well as the robustness of the proposed model with different parameter settings.  more » « less
Award ID(s):
1638355
PAR ID:
10291907
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2674
Issue:
9
ISSN:
0361-1981
Page Range / eLocation ID:
230 to 244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although urban transit systems (UTS) often have fixed vehicle capacity and relatively constant departure headways, they may need to accommodate dramatically fluctuating passenger demands over space and time, resulting in either excessive passenger waiting or vehicle capacity and energy waste. Therefore, on the one hand, optimal operations of UTS rely on accurate modeling of passenger queuing dynamics, which is particularly complex on a multistop transit corridor. On the other hand, capacities of transit vehicles can be made variable and adaptive to time-variant passenger demand so as to minimize energy waste, especially with the emergence of modular vehicle technologies. This paper investigates operations of a multistop transit corridor in which vehicles may have different capacities across dispatches. We specify skewed time coordinates to simplify the problem structure while incorporating traffic congestion. Then, we propose a mixed integer linear programming model that determines the optimal dynamic headways and vehicle capacities over the study time horizon to minimize the overall system cost for the transit corridor. In particular, the proposed model considers a realistic multistop first-in, first-out (MSFIFO) rule that gives the same boarding priority to passengers arriving at a station in the same time interval yet with different destinations. A customized dynamic programming (DP) algorithm is proposed to solve this model efficiently. To circumvent the rapid increase of the state space of a typical DP algorithm, we analyze the theoretical properties of the investigated problem and identify upper and lower bounds to a feasible solution. The bounds largely reduce the state space during the DP iterations and greatly improve the efficiency of the proposed DP algorithm. The state dimensions are also reduced with the MSFIFO rule such that all queues with different destinations at the same origin can be tracked with a single boarding position state variable at each stage. A hypothetical example and a real-world case study show that the proposed DP algorithm greatly outperforms a state-of-the-art commercial solver (Gurobi) in both solution quality and time. 
    more » « less
  2. The “asymmetry” between spatiotemporally varying passenger demand and fixed-capacity transportation supply has been a long-standing problem in urban mass transportation (UMT) systems around the world. The emerging modular autonomous vehicle (MAV) technology offers us an opportunity to close the substantial gap between passenger demand and vehicle capacity through station-wise docking and undocking operations. However, there still lacks an appropriate approach that can solve the operational design problem for UMT corridor systems with MAVs efficiently. To bridge this methodological gap, this paper proposes a continuum approximation (CA) model that can offer near-optimal solutions to the operational design for MAV-based transit corridors very efficiently. We investigate the theoretical properties of the optimal solutions to the investigated problem in a certain (yet not uncommon) case. These theoretical properties allow us to estimate the seat demand of each time neighborhood with the arrival demand curves, which recover the “local impact” property of the investigated problem. With the property, a CA model is properly formulated to decompose the original problem into a finite number of subproblems that can be analytically solved. A discretization heuristic is then proposed to convert the analytical solution from the CA model to feasible solutions to the original problem. With two sets of numerical experiments, we show that the proposed CA model can achieve near-optimal solutions (with gaps less than 4% for most cases) to the investigated problem in almost no time (less than 10 ms) for large-scale instances with a wide range of parameter settings (a commercial solver may even not obtain a feasible solution in several hours). The theoretical properties are verified, and managerial insights regarding how input parameters affect system performance are provided through these numerical results. Additionally, results also reveal that, although the CA model does not incorporate vehicle repositioning decisions, the timetabling decisions obtained by solving the CA model can be easily applied to obtain near-optimal repositioning decisions (with gaps less than 5% in most instances) very efficiently (within 10 ms). Thus, the proposed CA model provides a foundation for developing solution approaches for other problems (e.g., MAV repositioning) with more complex system operation constraints whose exact optimal solution can hardly be found with discrete modeling methods. 
    more » « less
  3. Recent studies and industry advancements indicate that modular vehicles (MVs) have the potential to enhance transportation systems through their ability to dock and split during a trip. Although various applications of MVs have been explored across different domains, their application in logistics remains underexplored. This study examines the use of MVs in cargo delivery to reduce total delivery costs. We model the delivery problem for MVs as a variant of the Vehicle Routing Problem, referred to as the Modular Vehicle Routing Problem (MVRP). In the MVRP, MVs can either serve customers independently or dock with other MVs to form a platoon, thereby reducing the average cost per unit. In this study, we mainly focus on two fundamental types of MVRPs, namely the capacitated MVRP (CMVRP) and the MVRP with time windows (MVRPTW). To address these problems, we first developed mixed-integer linear programming (MILP) models, which can be solved using commercial optimization solvers. Given the NP-hardness of this problem, we also designed a Tabu Search (TS) algorithm with a solution representation based on Gantt charts and a neighborhood structure tailored for the MVRP. Multi-start and shaking strategies were incorporated into the TS algorithm to escape local optima. Additionally, we explored other potential applications in logistics and discussed problem settings for three MVRP variants. Results from numerical experiments indicate that the proposed algorithm successfully identifies nearly all optimal solutions found by the MILP model in small-size benchmark instances, while also demonstrating good convergence speed in large-size benchmark instances. Comparative experiments show that the MVRP approach can reduce costs by approximately 5.6% compared to traditional delivery methods. Sensitivity analyses reveal that improving the cost-saving capability of MV platooning can enhance overall benefits. 
    more » « less
  4. null (Ed.)
    Public transit has been affected disproportionately by the social distancing requirements consequent to the COVID-19 pandemic. Technologies such as effortless ticketing and crowdedness assessment have the potential to increase safety and instill confidence for transit users. One key component of these technologies is the ability to detect the presence of a passenger inside a bus vehicle, as well as their approximate location within the vehicle. We present a preliminary study demonstrating the potential of a system that uses Bluetooth Low Energy (beacons), placed inside a vehicle, to localize a passenger within the length of the vehicle with an accuracy better than 1 meter. Based on these preliminary results, we are working on a long-term experiment that will collect RSSI data from BLE beacons (as well as GPS and inertial data) from passengers using the transit system of our campus. 
    more » « less
  5. null (Ed.)
    The design of autonomous vehicles (AVs) and the design of AV-enabled mobility systems are closely coupled. Indeed, knowledge about the intended service of AVs would impact their design and deployment process, whilst insights about their technological development could significantly affect transportation management decisions. This calls for tools to study such a coupling and co-design AVs and AV-enabled mobility systems in terms of different objectives. In this paper, we instantiate a framework to address such co-design problems. In particular, we leverage the recently developed theory of co-design to frame and solve the problem of designing and deploying an intermodal Autonomous Mobility-on-Demand system, whereby AVs service travel demands jointly with public transit, in terms of fleet sizing, vehicle autonomy, and public transit service frequency. Our framework is modular and compositional, allowing one to describe the design problem as the interconnection of its individual components and to tackle it from a system-level perspective. To showcase our methodology, we present a real-world case study for Washington D.C., USA. Our work suggests that it is possible to create user-friendly optimization tools to systematically assess costs and benefits of interventions, and that such analytical techniques might gain a momentous role in policy-making in the future. 
    more » « less