There is currently no gene expression assay that can assess if premalignant lesions will develop into invasive breast cancer. This study sought to identify biomarkers for selecting patients with a high potential for developing invasive carcinoma in the breast with normal histology, benign lesions, or premalignant lesions. A set of 26-gene mRNA expression profiles were used to identify invasive ductal carcinomas from histologically normal tissue and benign lesions and to select those with a higher potential for future cancer development (ADHC) in the breast associated with atypical ductal hyperplasia (ADH). The expression-defined model achieved an overall accuracy of 94.05% (AUC = 0.96) in classifying invasive ductal carcinomas from histologically normal tissue and benign lesions (n = 185). This gene signature classified cancer development in ADH tissues with an overall accuracy of 100% (n = 8). The mRNA expression patterns of these 26 genes were validated using RT-PCR analyses of independent tissue samples (n = 77) and blood samples (n = 48). The protein expression of PBX2 and RAD52 assessed with immunohistochemistry were prognostic of breast cancer survival outcomes. This signature provided significant prognostic stratification in The Cancer Genome Atlas breast cancer patients (n = 1100), as well as basal-like and luminal A subtypes, and was associated with distinct immune infiltration and activities. The mRNA and protein expression of the 26 genes was associated with sensitivity or resistance to 18 NCCN-recommended drugs for treating breast cancer. Eleven genes had significant proliferative potential in CRISPR-Cas9/RNAi screening. Based on this gene expression signature, the VEGFR inhibitor ZM-306416 was discovered as a new drug for treating breast cancer.
more »
« less
A simplified MyProstateScore2.0 for high-grade prostate cancer
Background:The limited diagnostic accuracy of prostate-specific antigen screening for prostate cancer (PCa) has prompted innovative solutions, such as the state-of-the-art 18-gene urine test for clinically-significant PCa (MyProstateScore2.0 (MPS2)).Objective:We aim to develop a non-invasive biomarker test, the simplified MPS2 (sMPS2), which achieves similar state-of-the-art accuracy as MPS2 for predicting high-grade PCa but requires substantially fewer genes than the 18-gene MPS2 to improve its accessibility for routine clinical care.Methods:We grounded the development of sMPS2 in the Predictability, Computability, and Stability (PCS) framework for veridical data science. Under this framework, we stress-tested the development of sMPS2 across various data preprocessing and modeling choices and developed a stability-driven PCS ranking procedure for selecting the most predictive and robust genes for use in sMPS2.Results:The final sMPS2 model consisted of 7 genes and achieved a 0.784 AUROC (95% confidence interval, 0.742–0.825) for predicting high-grade PCa on a blinded external validation cohort. This is only 2.3% lower than the 18-gene MPS2, which is similar in magnitude to the 1–2% in uncertainty induced by different data preprocessing choices.Conclusions:The 7-gene sMPS2 provides a unique opportunity to expand the reach and adoption of non-invasive PCa screening.
more »
« less
- PAR ID:
- 10578386
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Cancer Biomarkers
- Volume:
- 42
- Issue:
- 1
- ISSN:
- 1574-0153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Building and expanding on principles of statistics, machine learning, and scientific inquiry, we propose the predictability, computability, and stability (PCS) framework for veridical data science. Our framework, composed of both a workflow and documentation, aims to provide responsible, reliable, reproducible, and transparent results across the data science life cycle. The PCS workflow uses predictability as a reality check and considers the importance of computation in data collection/storage and algorithm design. It augments predictability and computability with an overarching stability principle. Stability expands on statistical uncertainty considerations to assess how human judgment calls impact data results through data and model/algorithm perturbations. As part of the PCS workflow, we develop PCS inference procedures, namely PCS perturbation intervals and PCS hypothesis testing, to investigate the stability of data results relative to problem formulation, data cleaning, modeling decisions, and interpretations. We illustrate PCS inference through neuroscience and genomics projects of our own and others. Moreover, we demonstrate its favorable performance over existing methods in terms of receiver operating characteristic (ROC) curves in high-dimensional, sparse linear model simulations, including a wide range of misspecified models. Finally, we propose PCS documentation based on R Markdown or Jupyter Notebook, with publicly available, reproducible codes and narratives to back up human choices made throughout an analysis. The PCS workflow and documentation are demonstrated in a genomics case study available on Zenodo.more » « less
-
Abstract When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high-dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB-PCA is based on the classical Kiefer–Wolfowitz non-parametric maximum likelihood estimator for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs and iterative refinement using an approximate message passing (AMP) algorithm. In theoretical ‘spiked’ models, EB-PCA achieves Bayes-optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB-PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single-cell RNA-seq.more » « less
-
Abstract Rapid development of transcriptome sequencing technologies has resulted in a data revolution and emergence of new approaches to study transcriptomic regulation such as alternative splicing, alternative polyadenylation, CRISPR knockout screening in addition to the regular gene expression. A full characterization of the transcriptional landscape of different groups of cells or tissues holds enormous potential for both basic science as well as clinical applications. Although many methods have been developed in the realm of differential gene expression analysis, they all geared towards a particular type of sequencing data and failed to perform well when applied in different types of transcriptomic data. To fill this gap, we offer a negative beta binomial t-test (NBBt-test). NBBt-test provides multiple functions to perform differential analyses of alternative splicing, polyadenylation, CRISPR knockout screening, and gene expression datasets. Both real and large-scale simulation data show superior performance of NBBt-test with higher efficiency, and lower type I error rate and FDR to identify differential isoforms and differentially expressed genes and differential CRISPR knockout screening genes with different sample sizes when compared against the current very popular statistical methods. An R-package implementing NBBt-test is available for downloading from CRAN ( https://CRAN.R-project.org/package=NBBttest ).more » « less
-
Sparse representation based classification (SRC) methods have achieved remarkable results. SRC, however, still suffer from requiring enough training samples, insufficient use of test samples, and instability of representation. In this paper, a stable inverse projection representation based classification (IPRC) is presented to tackle these problems by effectively using test samples. An IPR is first proposed and its feasibility and stability are analyzed. A classification criterion named category contribution rate is constructed to match the IPR and complete classification. Moreover, a statistical measure is introduced to quantify the stability of representation-based classification methods. Based on the IPRC technique, a robust tumor recognition framework is presented by interpreting microarray gene expression data, where a two-stage hybrid gene selection method is introduced to select informative genes. Finally, the functional analysis of candidate's pathogenicity-related genes is given. Extensive experiments on six public tumor microarray gene expression datasets demonstrate the proposed technique is competitive with state-of-the-art methods.more » « less
An official website of the United States government
