skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging the Rovibrational Ground State of the Helium–Neon Dimers 4 He 20 Ne and 4 He 22 Ne
Award ID(s):
2409311
PAR ID:
10578531
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
Volume:
16
Issue:
13
ISSN:
1948-7185
Format(s):
Medium: X Size: p. 3225-3231
Size(s):
p. 3225-3231
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use two different methods, Monte Carlo sampling and variational inference (VI), to perform a Bayesian calibration of the effective-range parameters in3He–4He elastic scattering. The parameters are calibrated to data from a recent set of3He–4He elastic scattering differential cross section measurements. Analysis of these data forElab≤ 4.3 MeV yields a unimodal posterior for which both methods obtain the same structure. However, the effective-range expansion amplitude does not account for the 7/2state of7Be so, even after calibration, the description of data at the upper end of this energy range is poor. The data up toElab = 2.6 MeV can be well described, but calibration to this lower-energy subset of the data yields a bimodal posterior. After adapting VI to treat such a multi-modal posterior we find good agreement between the VI results and those obtained with parallel-tempered Monte Carlo sampling. 
    more » « less
  2. It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (>1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3 He/ 4 He (up to 8.9R A ) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3 He/ 4 He >10.3R A (and potentially up to 26R A , similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1R A ). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3 He/ 4 He values in central Panama are likely derived from the infiltration of a Galápagos plume–like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a “mantle wind” toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits. 
    more » « less
  3. We develop a theory of strong anisotropy of the energy spectra in the thermally driven turbulent counterflow of superfluid 4 He. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy flux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by our numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiments, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is part of the theme issue ‘Scaling the turbulence edifice (part 2)’. 
    more » « less
  4. Pakou, A; Souliotis, G; Moustakidis, C (Ed.)
    In this work, we report the measurement of elastic and Coulomb break-up channels in6He+208Pb collisions at Elab= 19.3 MeV, close to the Coulomb barrier of this system ∼ 19 MeV. In the context of the astrophysical r-process, the reaction4He(2n,γ)6He has been proposed to be a key reaction in the path of synthesizing seed nuclei for the r-process, as12C, in an environment composed mainly of alpha particles and neutrons. Based on a theoretical approach for treating three body reactions by means of which its reaction rate can be inferred, our experimental approach aims to obtain an indirect measurement of the reaction rate of4He(2n,γ)6He by measuring the Coulomb breakup of6He under the intense electric field produced by a208Pb target nucleus. The experiment was carried out at the TriSol facility operated in the Nuclear Science Laboratory of the University of Notre Dame, USA, which delivered a6He beam together with other contaminants. Particular care must be taken for the alpha particles produced in the production reaction. 
    more » « less