skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 6, 2026

Title: AMIGOS-3 multi-sensor stations and the climate, ice, and ocean conditions at Thwaites Eastern Ice Shelf during 2020-2022
Award ID(s):
1929991
PAR ID:
10578559
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
IGS
Date Published:
Journal Name:
Journal of Glaciology
ISSN:
0022-1430
Page Range / eLocation ID:
1 to 38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract We present new data from the debris-rich basal ice layers of the NEEM ice core (NW Greenland). Using mineralogical observations, SEM imagery, geochemical data from silicates (meteoric10Be, εNd,87Sr/86Sr) and organic material (C/N, δ13C), we characterize the source material, succession of previous glaciations and deglaciations and the paleoecological conditions during ice-free episodes. Meteoric10Be data and grain features indicate that the ice sheet interacted with paleosols and eroded fresh bedrock, leading to mixing in these debris-rich ice layers. Our analysis also identifies four successive stages in NW Greenland: (1) initial preglacial conditions, (2) glacial advance 1, (3) glacial retreat and interglacial conditions and (4) glacial advance 2 (current ice-sheet development). C/N and δ13C data suggest that deglacial environments favored the development of tundra and taiga ecosystems. These two successive glacial fluctuations observed at NEEM are consistent with those identified from the Camp Century core basal sediments over the last 3 Ma. Further inland, GRIP and GISP2 summit sites have remained glaciated more continuously than the western margin, with less intense ice-substratum interactions than those observed at NEEM. 
    more » « less
  3. The largest uncertainty in future sea-level rise is loss of ice from the Greenland and Antarctic Ice Sheets. Ice shelves, freely floating platforms of ice that fringe the ice sheets, play a crucial role in restraining discharge of grounded ice into the ocean through buttressing. However, since the 1990s, several ice shelves have thinned, retreated, and collapsed. If this pattern continues, it could expose thick cliffs that become structurally unstable and collapse in a process called marine ice cliff instability (MICI). However, the feedbacks between calving, retreat, and other forcings are not well understood. Here we review observed modes of calving from ice shelves and marine-terminating glaciers, and their relation to environmental forces. We show that the primary driver of calving is long-term internal glaciological stress, but as ice shelves thin they may become more vulnerable to environmental forcing. This vulnerability—and the potential for MICI—comes from a combination of the distribution of preexisting flaws within the ice and regions where the stress is large enough to initiate fracture. Although significant progress has been made modeling these processes, theories must now be tested against a wide range of environmental and glaciological conditions in both modern and paleo conditions. ▪ Ice shelves, floating platforms of ice fed by ice sheets, shed mass in a near-instantaneous fashion through iceberg calving. ▪ Most ice shelves exhibit a stable cycle of calving front advance and retreat that is insensitive to small changes in environmental conditions. ▪ Some ice shelves have retreated or collapsed completely, and in the future this could expose thick cliffs that could become structurally unstable called ice cliff instability. ▪ The potential for ice shelf and ice cliff instability is controlled by the presence and evolution of flaws or fractures within the ice. 
    more » « less
  4. Abstract The Alaskan Layered Pollution and Chemical Analysis (ALPACA) field campaign included deployment of a suite of atmospheric measurements in January–February 2022 with the goal of better understanding atmospheric processes and pollution under cold and dark conditions in Fairbanks, Alaska. We report on measurements of particle composition, particle size, ice nucleating particle (INP) composition, and INP size during an ice fog period (29 January–3 February). During this period, coarse particulate matter (PM10) concentrations increased by 150% in association with a decrease in air temperature, a stronger temperature inversion, and relatively stagnant conditions. Results also show a 18%–78% decrease in INPs during the ice fog period, indicating that particles had activated into the ice fog via nucleation. Peroxide and heat treatments performed on INPs indicated that, on average, the largest contributions to the INP population were heat‐labile (potentially biological, 63%), organic (31%), then inorganic (likely dust, 6%). Measurements of levoglucosan and bulk and single‐particle composition corroborate the presence of dust and aerosols from combustion sources. Heat‐labile and organic INPs decreased during the peak period of the ice fog, indicating those were preferentially activated, while inorganic INPs increased, suggesting they remained as interstitial INPs. In general, INP concentrations were unexpectedly high in Fairbanks compared to other locations in the Arctic during winter. The fact that these INPs likely facilitated ice fog formation in Fairbanks has implications for other high latitude locations subject to the hazards associated with ice fog. 
    more » « less