skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 25, 2026

Title: Plasma Protein Risk Scores for Mild Cognitive Impairment and Alzheimer Disease in the Framingham Heart Study
INTRODUCTION: It is unclear whether aggregated plasma protein risk scores (PPRS) could be useful to predict the risks of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). METHODS: The Cox proportional hazard model with the LASSO penalty was used to build the PPRS for MCI and AD in 1,515 Framingham Heart Study Generation2 with 1,128 proteins measured in plasma at exam 5 [cognitive normal (CN)=1,258, MCI=129, AD=128]. RESULTS: MCI PPRS had a hazard ratio (HR) of 6.97[5.34,9.12], with a discriminating power (C-index=82.52%). AD PPRS had an HR of 5.74[4.67,7.05] (C-index=88.15%). Both PPRSs were also significantly associated with cognitive changes, brain-atrophy, and plasma AD biomarkers. Proteins in the MCI and AD PPRSs were enriched in several pathways related to leukocyte, chemotaxis, immunity, inflammation, and cellular migration. DISCUSSION: This study suggests that PPRS serve well to predict the risk of developing MCI and AD as well as cognitive changes and AD related pathogenesis in the brain.  more » « less
Award ID(s):
2347698
PAR ID:
10578853
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Alzheimers dementia
ISSN:
1552-5260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N  = 351) and Alzheimer’s disease (AD, N  = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk. 
    more » « less
  2. Alzheimer’s disease (AD) presents significant challenges in clinical practice due to its heterogeneous manifestation and variable progression rates. This work develops a comprehensive anatomical staging framework to predict progression from mild cognitive impairment (MCI) to AD. Using the ADNI database, the scalable Subtype and Stage Inference (s-SuStaIn) model was applied to 118 neuroanatomical features from cognitively normal (n = 504) and AD (n = 346) participants. The framework was validated on 808 MCI participants through associations with clinical progression, CSF and FDG-PET biomarkers, and neuropsychiatric measures, while adjusting for common confounders (age, gender, education, and APOE ε4 alleles). The framework demonstrated superior prognostic accuracy compared to traditional risk assessment (C-index = 0.73 vs. 0.62). Four distinct disease subtypes showed differential progression rates, biomarker profiles (FDG-PET and CSF Aβ42), and cognitive trajectories: Subtype 1, subcortical-first pattern; Subtype 2, executive–cortical pattern; Subtype 3, disconnection pattern; and Subtype 4, frontal–executive pattern. Stage-dependent changes revealed systematic deterioration across diverse cognitive domains, particularly in learning acquisition, visuospatial processing, and functional abilities. This data-driven approach captures clinically meaningful disease heterogeneity and improves prognostication in MCI, potentially enabling more personalized therapeutic strategies and clinical trial design. 
    more » « less
  3. Angiotensin-converting enzyme-1 (ACE1) and apolipoproteins (APOs) may play important roles in the development of Alzheimer’s disease (AD) and cardiovascular diseases (CVDs). This study aimed to examine the associations of AD, CVD, and endocrine-metabolic diseases (EMDs) with the levels of ACE1 and 9 APO proteins (ApoAI, ApoAII, ApoAIV, ApoB, ApoCI, ApoCIII, ApoD, ApoE, and ApoH). Non-Hispanic white individuals including 109 patients with AD, 356 mild cognitive impairment (MCI), 373 CVD, 198 EMD and controls were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Multivariable general linear model (GLM) was used to examine the associations. ApoE ε4 allele was associated with AD, as well as ApoAIV, ApoB and ApoE proteins, but not associated with CVD and EMD. Both AD and CVD were associated with levels of ACE1, ApoB, and ApoH proteins. AD, MCI and EMD were associated with levels of ACE1, ApoAII, and ApoE proteins. This is the first study to report associations of ACE1 and several APO proteins with AD, MCI, CVD and EMD, respectively, including upregulated and downregulated protein levels. In conclusion, as specific or shared biomarkers, the levels of ACE1 and APO proteins are implicated for AD, CVD, EMD and ApoE ε4 allele. Further studies are required for validation to establish reliable biomarkers for these health conditions. 
    more » « less
  4. Abstract INTRODUCTIONIdentifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all‐cause dementia (ACD) conversion at 5 years. METHODSCox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held‐out data subset. RESULTSOf 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72–0.74]), and calibration (Brier score 0.18 [95% CI 0.17–0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors. DISCUSSIONEHR‐based prediction model had good performance in identifying 5‐year MCI to ACD conversion and has potential to assist triaging of at‐risk patients. HighlightsOf 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all‐cause dementia within 5 years.Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18).Age and vascular‐related morbidities were predictors of dementia conversion.Synthetic data was comparable to real data in modeling MCI to dementia conversion. Key PointsAn electronic health record–based model using demographic and co‐morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all‐cause dementia (ACD) within 5 years.Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5‐year conversion from MCI to ACD.High body mass index, alcohol abuse, and sleep apnea were protective factors for 5‐year conversion from MCI to ACD.Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health‐care data with minimized patient privacy concern that could accelerate scientific discoveries. 
    more » « less
  5. Background: Biomarkers for Alzheimer’s disease (AD) are crucial for early diagnosis and treatment monitoring once disease modifying therapies become available. Objective: This study aims to quantify the forward magnetization transfer rate (kfor) map from brain tissue water to macromolecular protons and use it to identify the brain regions with abnormal kfor in AD and AD progression. Methods: From the Cardiovascular Health Study (CHS) cognition study, magnetization transfer imaging (MTI) was acquired at baseline from 63 participants, including 20 normal controls (NC), 18 with mild cognitive impairment (MCI), and 25 AD subjects. Of those, 53 participants completed a follow-up MRI scan and were divided into four groups: 15 stable NC, 12 NC-to-MCI, 12 stable MCI, and 14 MCI/AD-to-AD subjects. kfor maps were compared across NC, MCI, and AD groups at baseline for the cross-sectional study and across four longitudinal groups for the longitudinal study. Results: We found a lower kfor in the frontal gray matter (GM), parietal GM, frontal corona radiata (CR) white matter (WM) tracts, frontal and parietal superior longitudinal fasciculus (SLF) WM tracts in AD relative to both NC and MCI. Further, we observed progressive decreases of kfor in the frontal GM, parietal GM, frontal and parietal CR WM tracts, and parietal SLF WM tracts in stable MCI. In the parietal GM, parietal CR WM tracts, and parietal SLF WM tracts, we found trend differences between MCI/AD-to-AD and stable NC. Conclusion: Forward magnetization transfer rate is a promising biomarker for AD diagnosis and progression. 
    more » « less