The U.S. Pacific Northwest (PWN) coastal dunes are mainly colonized by two non-native beachgrass species (i.e., Ammophila arenaria and A. breviligulata) and a native dune grass (Leymus mollis) that capture sand and build dunes of different morphology. Recently, a hybrid beachgrass was discovered with unknown consequences for dune evolution. We set up a common garden experiment including seven treatments and two control plots to understand the effect of native and non-native plant species on sand accretion and dune morphological evolution. After 1.6 years, sand volume increased the most in the non-native species plots with levels at least twice as high for A. arenaria as compared to the other plots. The hybrid species had moderate sand accretion but a survival rate of 1.4 and 2.1 times higher than its parent species and native species, respectively. These results provide new insights for U.S. PNW coastal dune management.
more »
« less
This content will become publicly available on December 1, 2025
A New Approach to Account for Species‐Specific Sand Capture by Plants in an Aeolian Sediment Transport and Coastal Dune Building Model
Vegetation plays a crucial role in coastal dune building. Species‐specific plant characteristics can modulate sediment transport and dune shape, but this factor is absent in most dune building numerical models. Here, we develop a new approach to implement species‐specific vegetation characteristics into a process‐based aeolian sediment transport model. Using a three‐step approach, we incorporated the morphological differences of three dune grass species dominant in the US Pacific Northwest coast (European beachgrassAmmophila arenaria, American beachgrassA. breviligulata, and American dune grassLeymus mollis) into the model AeoLiS. First, we projected the tiller frontal area of each grass species onto a high resolution grid and then re‐scaled the grid to account for the associated vegetation cover for each species. Next, we calibrated the bed shear stress in the numerical model to replicate the actual sand capture efficiency of each species, as measured in a previously published wind tunnel experiment. Simulations were then performed to model sand bedform development within the grass canopies with the same shoot densities for all species and with more realistic average field densities. The species‐specific model shows a significant improvement over the standard model by (a) accurately simulating the sand capture efficiency from the wind tunnel experiment for the grass species and (b) simulating bedform morphology representative of each species' characteristic bedform morphology using realistic field vegetation density. This novel approach to dune modeling will improve spatial and temporal predictions of dune morphologic development and coastal vulnerability under local vegetation conditions and variations in sand delivery.
more »
« less
- Award ID(s):
- 2103713
- PAR ID:
- 10579282
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 129
- Issue:
- 12
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coastal foredunes provide the first line of defense against rising sea levels and storm surge and for this reason there is increasing interest in understanding and modeling foredune formation and post‐storm recovery. However, there is limited observational data available to provide empirical guidance for the development of model parameterizations. To provide guidance for improved representation of dune grass growth in models, we conducted a two‐year multi‐species transplant experiment on Hog Island, VA, U.S.A. and measured the dependence of plant growth on elevation and distance from the shoreline, as well as the relationship between plant growth and sand accumulation. We tracked total leaf growth (length) and aboveground leaf length and found thatAmmophila breviligulata(American beachgrass) andUniola paniculata(sea oats) grew more thanSpartina patens(saltmeadow cordgrass) by a factor of 15% (though not statistically significant) and 45%, respectively. Our results also suggest a range of basal/frontal area ratios (an important model parameter) from 0.5‐1 and a strong correlation between transplant growth and total sand deposition for all species at the scale of two years, but not over shorter temporal scales. Distance from the shoreline and elevation had no effect on transplant growth rate but did have an effect on survival. Based on transplant survival, the seaward limit of vegetation at the end of the experiment was approximately 30 m from the MHWL and at an elevation of 1.43 m, corresponding to inundation less than 7.5% of the time according to total water level calculations. Results from this experiment provide evidence for the dune‐building capacity of all three species, suggestingS. patensis not a maintainer species, as previously thought, but rather a moderate dune builder even though its growth is less stimulated by sand deposition thanA. breviligulataandU. paniculata. © 2019 John Wiley & Sons, Ltd.more » « less
-
Abstract Coastal ecosystems such as mangroves, salt marshes, and seagrasses sequester large amounts of carbon per unit area due to their high productivity and sediment accumulation rates. However, only a handful of studies have examined carbon sequestration in coastal dunes, which are shaped by biophysical feedback between aeolian sediment transport and burial-tolerant vegetation. The goal of this study was to measure carbon storage and identify the factors that influence its variability along the foredunes of the US Outer Banks barrier islands of North Carolina. Specifically, differences in carbon stocks (above- and belowground biomass and sand), dune grass abundance, and sand supply were measured among islands, cross-shore dune profile locations, and dune grass species. Carbon varied among aboveground grass biomass (0.1 ± 0.1 kg C m−2), belowground grass biomass (1.1 ± 1.6 kg C m−3), and sand (0.9 ± 0.6 kg C m−3), with the largest amount in belowground grass stocks. Aboveground grass carbon stocks were comparable to those in eelgrass beds and salt marshes on a per-area basis, while sediment carbon values in our study system were lower than those in other coastal systems, including other dune locations. Additionally, sand carbon density was positively related to patterns in dune sand supply and grass abundance, reflecting a self-reinforcing vegetation-sediment feedback at both high and low sand accumulation rates.more » « less
-
Coastal dune restoration often focuses on weed removal to reestablish native vegetation communities. Point Reyes National Seashore (PRNS) initiated large‐scale dune restoration after becoming concerned about loss of dune and rare species habitat from spread of non‐nativeAmmophila arenaria(European beachgrass). Two projects removed beachgrass from 146 ha of heavily invaded dunes using either mechanical removal or herbicide treatment. PRNS conducted pre‐ and post‐restoration vegetation monitoring for 10 years post‐implementation, evaluating success in (1) eradicating beachgrass and (2) reestablishing vegetation communities similar to native dunes in cover, diversity, and species composition. Both methods eradicated beachgrass with annual retreatment. However, they were less successful in rebuilding vegetation communities with comparable native species cover and/or richness. Mechanical removal areas remained largely barren expanses of sand that struggled to support native plants except for a rare perennial, Tidestrom's lupine (Lupinus tidestromii). Tidestrom's lupine and other rare plants now number in the hundreds of thousands. Conversely, herbicide‐treated backdunes were dominated by standing dead beachgrass that resisted decomposition even after 7 years, which hampered native and rare plant establishment. Delayed decomposition was less of an issue in herbicide‐treated foredunes, because sand overwash buried necromass. Restored areas also contended with subsequent invasion by secondary plant invaders. By 2021, only older herbicide‐treated backdunes, and to a lesser extent, mechanical backdunes, showed signs of convergence with native dunes. Successful convergence may be hindered by lingering physical and microbial legacy effects of beachgrass invasion and treatment method. Adaptive restoration may be needed to counter effects and improve project success.more » « less
-
Previous work on the US Atlantic coast has generally shown that coastal foredunes are dominated by two dune grass species,Ammophila breviligulata(American beachgrass) andUniola paniculata(sea oats). From Virginia northward,A. breviligulatadominates, whileU. paniculatais the dominant grass south of Virginia. Previous work suggests that these grasses influence the shape of coastal foredunes in species-specific ways, and that they respond differently to environmental stressors; thus, it is important to know which species dominates a given dune system. The range boundaries of these two species remains unclear given the lack of comprehensive surveys. In an attempt to determine these boundaries, we conducted a literature survey of 98 studies that either stated the range limits and/or included field-based studies/observations of the two grass species. We then produced an interactive map that summarizes the locations of the surveyed papers and books. The literature review suggests that the current southern range limit forA. breviligulatais Cape Fear, NC, and the northern range limit forU. paniculatais Assateague Island, on the Maryland and Virginia border. Our data suggest a northward expansion ofU. paniculata,possibly associated with warming trends observed near the northern range limit in Painter, VA. In contrast, the data regarding a range shift forA. breviligulataremain inconclusive. We also compare our literature-based map with geolocated records from the Global Biodiversity Information Facility and iNaturalist research grade crowd-sourced observations. We intend for our literature-based map to aid coastal researchers who are interested in the dynamics of these two species and the potential for their ranges to shift as a result of climate change.more » « less
An official website of the United States government
