Abstract It is important to understand how students reason in K-12 integrated STEM settings to better prepare teachers to engage their students in integrated STEM tasks. To understand the reasoning that occurs in these settings, we used the lens of collective argumentation, specifically attending to the types of warrants elementary students and their teachers provided and accepted in integrated STEM contexts and how teachers supported students in providing these warrants. We watched 103 h of classroom instruction from 10 elementary school teachers and analyzed warrants that occurred in arguments in mathematics, coding, and integrated contexts to develop a typology of warrants contributed in mathematics and coding arguments. We found that these students made their warrants explicit the majority of the time, regardless of the teacher’s presence or absence. When teachers were present, they supported argumentation in various ways; however, they offered less support in integrated contexts. Additionally, we found students relied more on visual observations in coding contexts than in mathematics or integrated contexts, where they often provided warrants based on procedures required to accomplish a task. These findings have implications for improving integrated STEM instruction through engaging students in argumentation.
more »
« less
This content will become publicly available on November 1, 2026
Evolution of Finch robot orchestrations in teaching primary school mathematics.
This study utilised the theoretical framework of instrumental orchestrations to analyse changes in types, frequencies, and sequences of orchestrations of two co-teachers in a 3rd grade Integrated Collaborative Teaching (ICT) classroom in New York City public school. The teachers implemented mathematics activities that used Finch robot and native block-based coding App to address topics in the standards-based curriculum while also attending monthly professional development (PD) sessions to support their implementation of these activities. Analysis of six videos collected over a period of one year indicated that as time progressed, the teachers felt more confident in using Finch to support mathematics instruction. They shifted from mostly teacher-centred orchestrations towards more student-centred ones. At the same time, they started using more types of orchestrations which also led on average to a larger orchestration frequency.
more »
« less
- Award ID(s):
- 2147699
- PAR ID:
- 10579291
- Publisher / Repository:
- Proceedings of the Fourteenth Congress of the European Society for Research in Mathematics Education (CERME14), http://erme.site/cerme-proceedings-series/
- Date Published:
- Subject(s) / Keyword(s):
- Instrumental orchestration Primary mathematics Classroom teaching practice Robot coding integration Technology.
- Format(s):
- Medium: X
- Location:
- Bolzano, Italy
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, we examine the reported beliefs of two elementary science teachers who co-taught a four-week engineering project in which students used a computational model to design engineering solutions to reduce water runoff at their school (Lilly et al., 2020). Specifically, we explore the beliefs that elementary science teachers report while enacting an engineering project in two different classroom contexts and how they report that their beliefs may have affected instructional decisions. Classroom contexts included one general class with a larger proportion of students in advanced mathematics and one inclusive class with a larger proportion of students with individualized educational programs. During project implementation, we collected daily surveys and weekly interviews to consider teachers’ beliefs of the class sections, classroom activities, and curriculum. Two researchers performed a thematic analysis of the surveys and interviews to code reflections on teachers’ perceived differences between students in the class sections and their experiences teaching engineering in the class sections. Results suggest that teachers’ beliefs about students in these two different classroom contexts may have influenced opportunities that students had to understand and engage in disciplinary practices. The teachers reported making changes to activities based on their perceptions of student understanding and engagement and to save time which led to different experiences for students in each class section, specifically a more teacher-centered implementation for the inclusive class. Teachers also suggested specific professional development and educative supports to help teachers to support all students to engage in engineering tasks. Thus, it is important to understand teachers’ beliefs to build support for teachers in their implementation of engineering projects that meet the needs of their students and ensure that students have access and support to engage in engineering practices.more » « less
-
The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms.more » « less
-
This study investigated the influence of immersive classroom simulation activities on the development of elementary pre-service teachers in two separate mathematics and science education courses that simultaneously focus on pedagogy and content. Participants submitted written personal reflections about their teaching experiences using the immersive classroom simulation activities. These reflections were analyzed for common emergent themes within and across courses. The participants discussed the benefits of the immersive classroom simulation activities in their written personal reflections. They viewed the experience as helpful in developing their skills as a practicing teacher in mathematics and science. Specifically, participants identified three sub-themes including: (a) the immersive classroom simulation activities as being beneficial by providing more authentic real-life teaching experiences than those experienced during peer-group teaching activities; (b) the importance of holding complete and appropriate understandings of content when teaching mathematics and science; and (c) the role of deep content knowledge in the process of developing high quality questions for students. This study has shown immersive classroom simulation activities to be a viable alternative for teacher education programs to engage elementary pre- service teachers in developing skills regarding classroom mathematics and science discourse.more » « less
-
Developers rarely build programming environments that help secondary teachers support student learning. We interviewed 11 K12 teachers to discover how they support students learning to program and how tools might assist their teaching practice. Based on thematic analysis and organizing teacher activities around student actions, we have derived a new framework that can be used to design a programming learning system to support teachers. Our results suggest that teachers structure their activities based on their ideals about effective programming teaching and learning, and student problem solving and help-seeking processes. Therefore, our framework relates the themes we discovered about teacher activities to ideals and student problem solving in a time-based framework that can inform the design for new programming learning systems.more » « less
An official website of the United States government
