This article chronicles the 50-year history of tsunami research and development at the NOAA Pacific Marine Environmental Laboratory (PMEL), beginning with the merger in 1973 of the Joint Tsunami Research Effort and PMEL. It traces the development of instrumentation and modeling that brought a better understanding of tsunamis and improved warning systems. The advantage of having observational engineering and flooding modeling under one roof are highlighted. Deep-ocean Assessment and Reporting of Tsunami (DART) research and development led to technology transfer to NOAA’s National Data Buoy Center (NDBC) that now operates and maintains 39 buoys and serves as real-time data distributor for other nations. This technology was also patented and licensed by PMEL to meet the needs of the international community. DART licensee Science Applications International Corporation (SAIC) has manufactured over 60 buoys for eight different countries. DART data are essential for accurate tsunami warnings, so the global society benefits by receiving lifesaving information before the arrival of a tsunami. PMEL’s tsunami flooding modeling research led to technology transfer to NOAA’s tsunami warning centers, the National Tsunami Hazard Mitigation Program, and international tsunami preparedness communities. Short-term flooding modeling research was initiated at PMEL to improve NOAA tsunami warning operations to better serve US coastal communities. The same validated modeling technology was then applied to produce hazard maps for coastal communities in the United States and internationally through the United Nations’ Intergovernmental Oceanographic Commission (IOC). Tsunami hazard maps are an essential first step in preparing a community for the next tsunami. Using these maps and other preparedness criteria, a community can become “Tsunami Ready” for the next event. Tsunami Ready has been adopted by the IOC as the global standard for preparedness of at-risk communities with total populations exceeding 890 million people.
more »
« less
Technology Transfer of PMEL Tsunami Research Protects Populations and Expands the New Blue Economy
NOAA Pacific Marine Environmental Laboratory’s (PMEL’s) approach to tsunami research is unique among such laboratories in that tsunami observations and modeling are under one roof, offering the advantages of enhancing the speed and lowering the cost of developments. Here, we chronicle the history of the transfer of deep-ocean observational and flooding modeling technologies within and outside of NOAA and provide a case study for future transfers. PMEL and partners’ efforts in transferring tsunami technology have been very successful, resulting in improved protection of global communities with high tsunami risk while enhancing the new blue economy. The transfer of observational technology within NOAA required years of effort, while the transfer outside of NOAA only required a patent and license agreement. During the transfer process, three additional generations of observational technologies were created. The transfer of tsunami flooding modeling technology required a validation process for transfer into NOAA operations and an international training program to allow access to the technology by other countries. During this model development, a web-based product was created to simplify the use of and access to these models for both real-time and hazard assessment applications. We present lessons learned from these transfers, including the need for support as long as the technology is in use. The tsunami transfer process created a wealth of economic expansion while protecting coastal citizens from future tsunamis.
more »
« less
- Award ID(s):
- 2103713
- PAR ID:
- 10579334
- Publisher / Repository:
- Oceanography
- Date Published:
- Journal Name:
- Oceanography
- ISSN:
- 1042-8275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Technology transfer entails the systematic transference of scientific research results to practical tasks. The research product may be a novel design, an effective process, a tool or a set of tools. Effective technology transfer depends on many factors. It includes recognizing a gap in knowledge, focusing on the end user’s needs, long-term planning, effective communication and collaboration between researchers, standards organizations, and potential users, and a successful reduction of the knowledge or training burden required by the user. This Research Topic provides five examples of robust technology transfer from researchers seeking to mitigate the effect of natural hazards on the built and natural environment—transfers of knowledge that will significantly advance our nation’s resilience in the face of growing natural hazard threats. In 2016, the National Science Foundation established the Natural Hazards Engineering Research Infrastructure (NHERI) network. NHERI provides engineering and social science researchers with access to a world-class research infrastructure to support their efforts to improve the resilience and sustainability of the nation’s civil, natural and social infrastructure against earthquakes, windstorms and associated natural hazards such as tsunami and storm surge in coastal areas. Supported by the National Science Foundation, NHERI is a nation-wide network that consists of 12 university-based, shared-use experimental facilities, a computational modeling and simulation center, and a shared community cyber-infrastructure.more » « less
-
This paper presents the use of tsunami evacuation drills within a coastal community in the Cascadia Subduction Zone (CSZ) to better understand evacuation behaviors and thus to improve tsunami evacuation preparedness and resilience. Evacuees’ spatial trajectory data were collected by Global Navigation Satellite System (GNSS) embedded in mobile devices. Based on the empirical trajectory data, probability functions were employed to model people’s walking speed during the evacuation drills. An Evacuation Hiking Function (EHF) was established to depict the speed–slope relationship and to inform evacuation modeling and planning. The regression analysis showed that evacuees’ speed was significantly negatively associated with slope, time spent during evacuation, rough terrain surface, walking at night, and distance to destination. We also demonstrated the impacts of milling time on mortality rate based on participants’ empirical evacuation behaviors and a state-of-the-art CSZ tsunami inundation model. Post-drill surveys revealed the importance of the drill as an educational and assessment tool. The results of this study can be used for public education, evacuation plan assessment, and evacuation simulation models. The drill procedures, designs, and the use of technology in data collection provide evidence-driven solutions to tsunami preparedness and inspire the use of drills in other types of natural disasters such as wildfires, hurricanes, volcanoes, and flooding.more » « less
-
Abstract A changing climate and growing coastal populations exacerbate the outcomes of environmental hazards. Large‐scale flooding and acute disasters have been extensively studied through historic and current data. Chronic coastal flooding is less well understood and poses a substantial threat to future coastal populations. This paper presents a novel technique to record chronic coastal flooding using inexpensive accelerometers. This technique was tested in Key West, FL, USA using storm drains to deploy HOBO pendant G data loggers. The accuracy and feasibility of the method was tested through four deployments performed by a team of local stakeholders and researchers between July 2019–November 2021 resulting in 22 sensors successfully recording data, with 15 of these sensors recording flooding. Sensors captured an average of 13.58 inundation events, an average of 12.07% of the deployment time. Measured flooding events coincided with local National Oceanic and Atmospheric Administration (NOAA) water level measurements of high tides. Multiple efforts to predict coastal flooding were compared. Sensors recorded flooding even when NOAA water levels did not exceed the elevation or flooding thresholds set by the National Weather Service (NWS), indicating that NOAA water levels alone were not sufficient in predicting flooding. Access to an effective and inexpensive sensor, such as the one tested here, for measuring flood events can increase opportunities to measure chronic flood hazards and assess local vulnerabilities with stakeholder participation. The ease of use and successful recording of loggers can give communities an increased capacity to make data‐informed decisions surrounding sea level rise adaptation.more » « less
-
null (Ed.)Earthquakes along the Cascadia subduction zone would generate a local tsunami that could arrive at coastlines within minutes. Few studies provide empirical evidence to understand the potential behaviors of local residents during this emergency. To fill this knowledge gap, this study examines residents’ perceptions and intended evacuation behaviors in response to an earthquake and tsunami, utilizing a survey sent to households in Seaside, OR. The results show that the majority of respondents can correctly identify whether their house is inside or outside a tsunami inundation zone. Older respondents are more likely to identify this correctly regardless of any previous disaster evacuation experience or community tenure. The majority of respondents (69%) say they would evacuate in the event of a tsunami. Factors influencing this choice include age, motor ability, access to transportation, and trust in infrastructure resiliency or traffic conditions. While the City of Seaside actively promotes evacuation by foot, 38% of respondents still state they would use a motor vehicle to evacuate. Females and older respondents are more likely to evacuate by foot. Respondents with both higher confidence in their knowledge of disaster evacuation and higher income are more likely to indicate less time needed to evacuate than others. Generally, respondents are more likely to lead rather than follow during an evacuation, especially respondents who report being more prepared for an evacuation and who have a higher perceived risk. This study showcases a unique effort at empirically analyzing human tsunami evacuation lead or follow choice behavior.more » « less
An official website of the United States government

