skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of biochar amendment on soil microbial biomass carbon enhancement under field experiments: a meta-analysis
Abstract Biochar is well-accepted as a viable climate mitigation strategy to promote agricultural and environmental benefits such as soil carbon sequestration and crop productivity while reducing greenhouse gas emissions. However, its effects on soil microbial biomass carbon (SMBC) in field experiments have not yet been thoroughly explored. In this study, we collected 539 paired globally published observations to study the impacts of biochar on SMBC under field experiments. Our results suggested an overall positive impact of biochar (21.31%) on SMBC, varying widely with different climate conditions, soil types, biochar properties, and management practices. Biochar application exhibits significant impacts under climates with mean annual temperature (MAT) < 15 °C and mean annual precipitation (MAP) between 500 and 1000 mm. Soils of coarse and fine texture, alkaline pH (SPH), soil total organic carbon (STC) content up to 10 g/kg, soil total nitrogen (STN) content up to 1.5 g/kg, and low soil cation exchange capacity (SCEC) content of < 5 cmol/kg received higher positive effects of biochar application on SMBC. Biochar produced from crop residue, specifically from cotton and maize residue, at pyrolysis temperature (BTM) of < 400 °C, with a pH (BPH) between 8 and 9, low application rate (BAP) of < 10 t/ha, and high ash content (BASH) > 400 g/kg resulted in an increase in SMBC. Low biochar total carbon (BTC) and high total nitrogen (BTN) positively affect the SMBC. Repeated application significantly increased the SMBC by 50.11%, and fresh biochar in the soil (≤ 6 months) enhanced SMBC compared to the single application and aged biochar. Biochar applied with nitrogen fertilizer (up to 300 kg/ha) and manure/compost showed significant improvements in SMBC, but co-application with straw resulted in a slight negative impact on the SMBC. The best-fit gradient boosting machines model, which had the lowest root mean square error, demonstrated the relative importance of various factors on biochar effectiveness: biochar, soil, climate, and nitrogen applications at 46.2%, 38.1%, 8.3%, and 7.4%, respectively. Soil clay proportion, BAP, nitrogen application, and MAT were the most critical variables for biochar impacts on SMBC. The results showed that biochar efficiency varies significantly in different climatic conditions, soil environments, field management practices, biochar properties, and feedstock types. Our meta-analysis of field experiments provides the first quantitative review of biochar impacts on SMBC, demonstrating its potential for rehabilitating nutrient-deprived soils and promoting sustainable land management. To improve the efficiency of biochar amendment, we call for long-term field experiments to measure SMBC across diverse agroecosystems. Graphical Abstract  more » « less
Award ID(s):
2326940 1940696 2327138 2045235
PAR ID:
10579346
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Biochar
Volume:
7
Issue:
1
ISSN:
2524-7867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peña-Fernández, Antonio (Ed.)
    Application of crop residues and biochar have been demonstrated to improve soil biological and chemical properties in agroecosystems. However, the integrated effect of organic amendments and hydrological cycles on soil health indicators are not well understood. In this study, we quantified the impact of hemp residue (HR), hemp biochar (HB), and hardwood biochar (HA) on five hydrolytic enzymes, soil microbial phospholipid (PLFA) community structure, pH, permanganate oxidizable carbon (POXC) soil organic carbon (SOC), and total nitrogen (TN). We compared two soil types, Piedmont and Coastal Plain soils of North Carolina, under (i) a 30-d moisture cycle maintained at 60% water-filled pore space (WFPS) (D-W1), followed by (ii) a 7-day alternate dry-wet cycle for 42 days (D-W2), or (iii) maintained at 60% WFPS for 42 days (D-W3) during an aerobic laboratory incubation. Results showed that HR and HB significantly increased the geometric mean enzyme activity by 1-2-fold in the Piedmont soil under the three moisture cycles and about 1.5-fold under D-W in the Coastal soil. In the presence of HA, the measured soil enzyme activities were significantly lower than control under the moisture cycles in both soil types. The shift in microbial community structure was distinct in the Coastal soil but not in the Piedmont soil. Under D-W2, HR and HB significantly increased POXC (600–700 mg POXC kg -1 soil) in the Coastal soil but not in the Piedmont soil while HA increased nitrate (8 mg kg -1 ) retention in the Coastal soil. The differences in amendment effect on pH SOC, TN, POXC, and nitrate were less distinct in the fine-textured Piedmont soil than the coarse-textured Coastal soil. Overall, the results indicate that, unlike HA, HR and HB will have beneficial effects on soil health and productivity, therefore potentially improving soil’s resilience to changing climate. 
    more » « less
  2. Abstract Greenhouse gas (GHG) emissions reduction efforts are underway to mitigate climate change worldwide. Climate‐smart agriculture (CSA) practices have been shown to both increase soil organic carbon (SOC) inputs and reduce net greenhouse gas emissions (GHGnet). We evaluated the GHGnet of several management practices with three biogeochemical models (APSIM, Daycent, and RothC) at two sites with contrasting soils, climates, and cropping systems. Additionally, two future climate scenarios (baseline and high‐emissions) provided alternative outcomes of SOC, N2O, and CH4by 2050. In Michigan, most biochar and residue retention with no‐till treatments increased SOC stocks; leguminous cover crops, no‐till, and reducing fertilizer input lowered N2O emissions. The lowest biochar treatment lowered GHGnet in the baseline climate scenario, but all other management treatments increased GHGnet under both baseline and high emissions, and all management scenarios increased a mean of 8.0 Mg CO2‐equivalent GHG (CO2e) ha−1from baseline to high emissions. Conversely, in Texas, most treatments increased SOC, and N2O was relatively constant. Every no‐till treatment reversed GHGnet in both the baseline and high‐emissions climate scenarios but all management scenarios increased a mean of 0.6 Mg CO2e ha−1under high emissions. At both sites under high‐emissions climate change, cover crops and no‐till resulted in the lowest GHGnet overall. Overall, the study showed that no‐till, especially with residue retention, and cover crops are important CSA practices to lower the GHGnet of agriculture, but there remains much room to find even more effective solutions to adapt to climate change. 
    more » « less
  3. Abstract Conservation management practices often produced positive but limited desirable outcomes in US Southeast sandy soils, likely due to their intrinsically low clay contents that constrain the soil's capacity to preserve organic carbon (C) and nutrients. In the field, we tested the effectiveness of a novel approach, that is, clay soil amendment, to improve sandy soils. In October 2017, clay‐rich soils (25% clay) were spread at 25 metric tons ha−1 and tilled onto a sandy soil (1.9% clay) in the field, which was further mixed by light tillage at 0‐ to 15‐cm depth, followed by planting winter cover crop mixtures (cereal rye, crimson clover, and winter pea). The crop rotation was cotton and corn with cover crop mixtures planted in the winter fallow season. Soils (0–15 cm) were collected in August 2021 and subjected to physio‐biochemical analyses. Clay amendment increased soil clay content to 3.4%, which improved nitrogen (N) availability by 51% but inhibited the activities of C (β‐d‐cellubiosidase [CB]; β‐xylosidase [BX];N‐acetyl‐β‐glucosaminidase [NAG]) and N (leucine aminopeptidase [LAP]) cycling enzymes, resulting in up to 78% reduction in microbial respiration. A follow‐up kinetic study on BG and LAP enzymes suggested that clay addition can have different impacts on enzymes with diverse biological origins through distinct mechanisms. Clay addition can potentially improve sandy soils by stabilizing the organic inputs in soils. However, more research is required to understand its long‐term impacts making this approach practical. 
    more » « less
  4. Soil salinization is an increasing global problem, especially in agricultural, coastal, and roadside environments. The increasing intensity of precipitation events due to climate change may be exacerbating these effects, such as through larger pulses of deicing salts entering roadside green stormwater infrastructure (GSI) and stronger coastal storms bringing seawater further inland. Although soils are often amended with biochar to remove pollutants and improve hydraulic properties, it may also mitigate the impact of salinity. Here, we compared the water retention properties and unsaturated hydraulic conductivities of both biochar-amended and unamended GSI soil media with varying salinity levels (1-25 dS m-1, using Na+ salts). The effects of salinity on both matric and osmotic potential included shifts in the plant-available water range, with the magnitude depending on the salt concentration and biochar content. Overall, biochar addition decreased the salinity and improved plant water availability in salt-affected soils. There was an increase in the integral water capacity (which describes the total amount of water the soil media can hold and release to a plant) for biochar-amended saline soils, demonstrating that biochar can reduce the total osmo-matric stress. On a macro scale, the high density of pores in biochar appears to increase soil hydraulic conductivity while reducing osmotic potential by adsorbing salt ions. On a micro scale, the negative surface charge of biochar likely counteracts the impact of the electric double layer of saline soils, reducing the total osmo-matric force on water molecules in soil solution. In effect, this helps the plant's osmotic potential to overcome the forces holding water molecules to soil grains. As soils become more saline due to ongoing climate-related snow events, biochar application might be an effective management technique for roadside and other saline soils. 
    more » « less
  5. Agricultural management practices improve crop yields to satisfy food demand of the growing population. However, these activities can have negative consequences, including the release of greenhouse gas (GHG) emissions that contribute to global climate change. To mitigate this global environmental problem, the management practices that contribute the most to system GHG emissions should be identified and targeted to mitigate emissions. Accordingly, we estimated the cradle-to-product GHG emissions of irrigated corn production under various farmer-selected scenarios at an experimental testing field in the semi-arid U.S. Great Plains. We applied a carbon footprint approach to quantify life cycle GHG emissions associated with pre-field (e.g., energy production, fertilizer production) and in-field (e.g., groundwater pumping, fertilizer application) activities within fourteen scenarios in the 2020 Oklahoma Testing Ag Performance Solutions (TAPS) sprinkler corn competition. We determined that 63% of the total GHG emission from corn production was associated with in- field activities and that agricultural soil emissions were the overall driving factor. Soil biochemical processes within agricultural soils were expected to contribute an average of 89 ± 18 g CO2-eq kg− 1 corn of the total 271 ± 46 g CO2-eq kg− 1 corn estimated from these systems. On-site natural gas combustion for agricultural groundwater pumping, pre-field fertilizer production, and pre-field energy production for groundwater pumping were the next most influential parameters on total GHG emissions. Diesel fuel, seed, and herbicide production had insignificant contributions to total GHG emissions from corn production. The model was most sensitive to the modeled GHG emissions from agricultural soil, which had significant uncertainty in the emission factor. Therefore, future efforts should target field measurements to better predict the contribution of direct soil emissions to total GHG emissions, particularly under different managements. In addition, identifying the optimal application rate of irrigation water and fertilizer will help to decrease GHG emissions from groundwater irrigated crops. 
    more » « less