This paper presents a unified approach for maximizing continuous DRsubmodular functions that encompasses a range of settings and oracle access types. Our approach includes a Frank-Wolfe type offline algorithm for both monotone and non-monotone functions, with different restrictions on the general convex set. We consider settings where the oracle provides access to either the gradient of the function or only the function value, and where the oracle access is either deterministic or stochastic. We determine the number of required oracle accesses in all cases. Our approach gives new/improved results for nine out of the sixteen considered cases, avoids computationally expensive projections in three cases, with the proposed framework matching performance of state-of-the-art approaches in the remaining four cases. Notably, our approach for the stochastic function valuebased oracle enables the first regret bounds with bandit feedback for stochastic DR-submodular functions.
more »
« less
A Unified Approach for Maximizing Continuous DR-submodular Functions
This paper presents a unified approach for maximizing continuous DR-submodular functions that encompasses a range of settings and oracle access types. Our approach includes a Frank-Wolfe type offline algorithm for both monotone and non-monotone functions, with different restrictions on the general convex set. We consider settings where the oracle provides access to either the gradient of the function or only the function value, and where the oracle access is either deterministic or stochastic. We determine the number of required oracle accesses in all cases. Our approach gives new/improved results for nine out of the sixteen considered cases, avoids computationally expensive projections in three cases, with the proposed framework matching performance of state-of-the-art approaches in the remaining four cases. Notably, our approach for the stochastic function value-based oracle enables the first regret bounds with bandit feedback for stochastic DR-submodular functions.
more »
« less
- Award ID(s):
- 2149617
- PAR ID:
- 10579436
- Editor(s):
- Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S
- Publisher / Repository:
- Curran Associates, Inc.
- Date Published:
- Volume:
- 36
- ISBN:
- 978-17-13899-92-1
- Page Range / eLocation ID:
- 61103--61114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces unified projection-free Frank-Wolfe type algorithms for adversarial continuous DR-submodular optimization, spanning scenarios such as full information and (semi-)bandit feedback, monotone and non-monotone functions, different constraints, and types of stochastic queries. For every problem considered in the non-monotone setting, the proposed algorithms are either the first with proven sub-linear $$\alpha$$-regret bounds or have better $$\alpha$$-regret bounds than the state of the art, where $$\alpha$$ is a corresponding approximation bound in the offline setting. In the monotone setting, the proposed approach gives state-of-the-art sub-linear $$\alpha$$-regret bounds among projection-free algorithms in 7 of the 8 considered cases while matching the result of the remaining case. Additionally, this paper addresses semi-bandit and bandit feedback for adversarial DR-submodular optimization, advancing the understanding of this optimization area.more » « less
-
Berry, Jonathan; Shmoys, David; Cowen, Lenore; Naumann, Uwe (Ed.)Continuous DR-submodular functions are a class of functions that satisfy the Diminishing Returns (DR) property, which implies that they are concave along non-negative directions. Existing works have studied monotone continuous DR-submodular maximization subject to a convex constraint and have proposed efficient algorithms with approximation guarantees. However, in many applications, e. g., computing the stability number of a graph and mean-field inference for probabilistic log-submodular models, the DR-submodular function has the additional property of being strongly concave along non-negative directions that could be utilized for obtaining faster convergence rates. In this paper, we first introduce and characterize the class of strongly DR-submodular functions and show how such a property implies strong concavity along non-negative directions. Then, we study L-smooth monotone strongly DR-submodular functions that have bounded curvature, and we show how to exploit such additional structure to obtain algorithms with improved approximation guarantees and faster convergence rates for the maximization problem. In particular, we propose the SDRFW algorithm that matches the provably optimal approximation ratio after only iterations, where c ∈ [0,1] and μ ≥ 0 are the curvature and the strong DR-submodularity parameter. Furthermore, we study the Projected Gradient Ascent (PGA) method for this problem and provide a refined analysis of the algorithm with an improved approximation ratio (compared to ½ in prior works) and a linear convergence rate. Given that both algorithms require knowledge of the smoothness parameter L, we provide a novel characterization of L for DR-submodular functions showing that in many cases, computing L could be formulated as a convex optimization problem, i. e., a geometric program, that could be solved efficiently. Experimental results illustrate and validate the efficiency and effectiveness of our algorithms.more » « less
-
This paper studies distributed submodular optimization subject to partition matroid. We work in the value oracle model where the only access of the agents to the utility function is through a black box that returns the utility function value. The agents are communicating over a connected undirected graph and have access only to their own strategy set. As known in the literature, submodular maximization subject to matroid constraints is NP-hard. Hence, our objective is to propose a polynomial-time distributed algorithm to obtain a suboptimal solution with guarantees on the optimality bound. Our proposed algorithm is based on a distributed stochastic gradient ascent scheme built on the multilinear-extension of the submodular set function. We use a maximum consensus protocol to minimize the inconsistency of the shared information over the network caused by delay in the flow of information while solving for the fractional solution of the multilinear extension model. Furthermore, we propose a distributed framework of finding a set solution using the fractional solution. We show that our distributed algorithm results in a strategy set that when the team objective function is evaluated at worst case the objective function value is in 1−1/e−O(1/T) of the optimal solution in the value oracle model where T is the number of communication instances of the agents. An example demonstrates our results.more » « less
-
We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $$1-1/e-\epsilon$$ approximation for monotone functions and a $$1/e-\epsilon$$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $$O(\log^2{n}/\epsilon^3)$$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $$1/e-\epsilon$$ approximation using $$O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $$1-1/e-\epsilon$$ approximation in $$O(\log(n/\epsilon)\log(m)/\epsilon^2)$$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function.more » « less
An official website of the United States government

