skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Update on the state of research to manage Fusarium head blight
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicidetolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.  more » « less
Award ID(s):
2300123
PAR ID:
10579438
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Fungal Genetics and Biology
Volume:
169
Issue:
C
ISSN:
1087-1845
Page Range / eLocation ID:
103829
Subject(s) / Keyword(s):
Fusarium graminearum Cereal disease Mycotoxin Integrated management Biological control RNAi
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fusarium graminearum, the primary cause of Fusarium head blight (FHB) in small-grain cereals, demonstrates remarkably variable levels of aggressiveness in its host, producing different infection dynamics and contrasted symptom severity. While the secreted proteins, including effectors, are thought to be one of the essential components of aggressiveness, our knowledge of the intra-species genomic diversity of F. graminearum is still limited. In this work, we sequenced eight European F. graminearum strains of contrasting aggressiveness to characterize their respective genome structure, their gene content and to delineate their specificities. By combining the available sequences of 12 other F. graminearum strains, we outlined a reference pangenome that expands the repertoire of the known genes in the reference PH-1 genome by 32%, including nearly 21,000 non-redundant sequences and gathering a common base of 9250 conserved core-genes. More than 1000 genes with high non-synonymous mutation rates may be under diverse selection, especially regarding the trichothecene biosynthesis gene cluster. About 900 secreted protein clusters (SPCs) have been described. Mostly localized in the fast sub-genome of F. graminearum supposed to evolve rapidly to promote adaptation and rapid responses to the host’s infection, these SPCs gather a range of putative proteinaceous effectors systematically found in the core secretome, with the chloroplast and the plant nucleus as the main predicted targets in the host cell. This work describes new knowledge on the intra-species diversity in F. graminearum and emphasizes putative determinants of aggressiveness, providing a wealth of new candidate genes potentially involved in the Fusarium head blight disease. 
    more » « less
  2. Abstract Fusarium head blight (FHB; caused byFusarium graminearum) is a destructive disease of wheat (Triticumspp.), barley (Hordeum vulgare), rye (Secale cerealeL.), and triticale (×TriticosecaleWittmack) not only reducing their yield but also contaminating the grain with mycotoxins such as deoxynivalenol (DON). Developing varieties with genetic resistance is integral to successfully manage FHB. Triticale acreage worldwide is steadily increasing. However, the genetic diversity of triticale for FHB resistance is not well characterized. In the present study, a sequential screening of a set of winter triticale accessions from a global collection was done for their type‐2 FHB resistance and DON accumulation. In the first‐year screening, 298 triticale accessions were tested for FHB in an artificially inoculated, misted‐field nursery with high inoculum density. Most of the triticale accessions were susceptible to FHB, and only 8% of the accessions showed resistance in the field nursery screening. Next, the 24 resistant accessions identified in the nursery screening were tested for 2 years in greenhouse and 17 accessions showed significantly lower FHB severity in Year 2 and/or Year 3. These 17 resistant accessions were further tested for their FHB severity and DON accumulation in Year 4 in greenhouse and for DON accumulation in Year 5 in the field FHB nursery. Eight accessions showed significantly lower FHB severity and nine accessions showed DON accumulation of less than 1 mg/kg in Year 4 greenhouse testing. Eleven accessions had significantly lower DON concentration than the susceptible check in the Year 5 field screening. The resistant accessions common across all years identified in the study can be used for enhancing FHB resistance and reducing DON accumulation in triticale breeding programs. 
    more » « less
  3. Abstract Feeding the world's ever‐increasing population requires continuous development of high‐yielding and disease‐resistant cultivars of food crops such as wheat (Triticum aestivumL.). Speed breeding, which utilizes longer photoperiod times and higher temperatures, is a technique that accelerates plant development and is rapidly being adopted by wheat breeders across the globe to fast‐track cultivar development. Plant diseases are a major threat to crop production, and breeding for disease resistance is a major goal of crop breeders. Fusarium head blight (FHB), caused byFusarium graminearum, is a major disease of small grain cereals, affecting their yield and quality. The aim of present work was to assess if speed breeding conditions can be used to accelerate reliable assessment of FHB severity and mycotoxin deoxynivalenol (DON) accumulation in wheat varieties. We screened a set of six spring wheat genotypes with different levels of genetic resistance (two moderately susceptible, two highly susceptible, one moderately resistant, and one resistant) for their response to FHB at 14 days after inoculation (dai) and 21 dai and DON accumulation under normal versus speed breeding conditions. FHB severity and DON accumulation were found to be highly correlated at all time points under normal and speed breeding conditions. Robust differentiation between resistant and susceptible genotypes could be achieved at 14 dai rather than the normal period of 21 dai, saving at least a week in phenotyping. Combined with the accelerated growth, flowering, and maturity under these conditions, efficient FHB screening and DON evaluation under speed breeding conditions will fast‐track development of resistant wheat varieties. 
    more » « less
  4. Fusarium head blight (FHB), caused by the hemibiotrophic fungus Fusarium graminearum, is one of the major threats to global wheat productivity. A wheat pore-forming toxin-like (PFT) protein was previously reported to underlie Fhb1, the most widely used quantitative trait locus in FHB breeding programs worldwide. In the present work, wheat PFT was ectopically expressed in the model dicot plant Arabidopsis. Heterologous expression of wheat PFT in Arabidopsis provided a broad-spectrum quantitative resistance to fungal pathogens including F. graminearum, Colletotrichum higginsianum, Sclerotinia sclerotiorum, and Botrytis cinerea. However, there was no resistance to bacterial or oomycete pathogens Pseudomonas syringae and Phytophthora capsici, respectively in the transgenic Arabidopsis plants. To explore the reason for the resistance response to, exclusively, the fungal pathogens, purified PFT protein was hybridized to a glycan microarray having 300 different types of carbohydrate monomers and oligomers. It was found that PFT specifically hybridized with chitin monomer, N-acetyl glucosamine (GlcNAc), which is present in fungal cell walls but not in bacteria or oomycete species. This exclusive recognition of chitin may be responsible for the specificity of PFT-mediated resistance to fungal pathogens. Transfer of the atypical quantitative resistance of wheat PFT to a dicot system highlights its potential utility in designing broad-spectrum resistance in diverse host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  5. Fusarium avenaceum is a filamentous fungus commonly associated with plants and soil. It is a causal agent of Fusarium head blight (FHB) on maize and small-grain cereals and blights on other plant species, and is one of the very few fungal species known to have ice nucleation activity (i.e., it catalyzes ice formation). Here, we report the draft genome of the ice-nucleation-active F. avenaceum strain F156N33 isolated from the atmosphere above Virginia. The genome assembly is 41,175,306 bp long, consists of 214 contigs, and is predicted to encode 11,233 proteins, which were annotated using RNA-sequencing data obtained from the same strain. 
    more » « less