The growing data demands are pushing researchers to pay more attention to spectrally efficient modulation formats. The four-dimensional (4D) signal constellation modulation format has been investigated for metro networks’ applications to achieve better power efficiency. To cope with such modulation formats, the requirement of better digital signal processing (DSP) is also increasing rapidly. More complicated DSPs bring us extra costs; thus, the DSP-free coherent receivers are also investigated because of the high-power consumption of conventional DSP-based receivers, but the transceivers upgrading also results in extra costs. In this invited paper we implement a 4-dimentional modulation format based on Slepian sequences. We applied LDPC coding and experimentally investigated the BER performance in a two-dimensional (2D) 40 km fiber link transmission and demonstrate that being error free is possible without employing the complicated DSP. We compared our proposed modulation scheme with regular 16QAM and found it outperforms 16QAM with DSP over back-to-back transmission by 3.8 dB improvement in OSNR when BER = 10−5, while over 40 km metro network communication link our proposed 4D modulation signals are still successfully transmitted, and the LDPC-coding still works properly with such a new transmission strategy. On the other hand, DSP-free transmission of LDPC-coded 16-QAM exhibits an early error floor phenomenon.
more »
« less
Highly Reliable and Secure System With Multi-Layer Parallel LDPC and Kyber for 5G Communications
The development of fifth-generation (5G) technology marks a significant milestone for digital communication systems, providing substantial improvements in data transmission speeds and enabling enhanced connectivity across a wider range of devices. However, this rapid increase in data volume also introduces new challenges related to transmission latency, reliability, and security. This paper introduces KyMLP-LDPC, a novel approach that integrates a multi-layer parallel LDPC (MLP-LDPC) algorithm with Kyber, a post-quantum cryptography scheme, to accelerate and enable reliable and secure transmission. MLP-LDPC partitions the LDPC parity check matrix into processing groups to streamline parallel decoding and minimize message collisions during transmission, thereby accelerating error correction operations. Kyber encrypts data preemptively to safeguard against potential attacks. The effectiveness of our proposed method is evaluated using both image data and signals transmitted through an additive white Gaussian noise communication channel. Evaluation results demonstrate that the proposed method achieves superior performance in terms of error correction capabilities and data security compared to existing approaches.
more »
« less
- Award ID(s):
- 2348464
- PAR ID:
- 10579458
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Access
- Volume:
- 12
- ISSN:
- 2169-3536
- Page Range / eLocation ID:
- 157260 to 157271
- Subject(s) / Keyword(s):
- Digital communication systems LDPC codes quantum computing Kyber 5G communication security reliability
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Novel sparse regression LDPC (SR-LDPC) codes exhibit excellent performance over additive white Gaussian noise (AWGN) channels in part due to their natural provision of shaping gains. Though SR-LDPC-like codes have been considered within the context of single-user error correction and massive random access, they are yet to be examined as candidates for coordinated multi-user communication scenarios. This article explores this gap in the literature and demonstrates that SR-LDPC codes, when combined with coded demixing techniques, offer a new framework for efficient non-orthogonal multiple access (NOMA) in the context of coordinated multi-user communication channels. The ensuing communication scheme is referred to as MU-SR-LDPC coding. Empirical evidence suggests that MU-SR-LDPC coding can increase the sum-rate for a fixed Eb/N0 when compared to orthogonal multiple access (OMA) techniques such as time division multiple access (TDMA) or frequency division multiple access (FDMA). Importantly, MU-SR-LDPC coding enables a pragmatic solution path for user-centric cell-free communication systems with (local) joint decoding. Results are supported by numerical simulations.more » « less
-
null (Ed.)This paper presents a ternary low-density parity-check (LDPC) error correction system for wireless electrocardiogram sensors to improve the accuracy of arrhythmia classification. The classification system is based on ternary Delta-modulated bitstreams and rotation linear kernel support vector machines, which identifies the supraventricular ectopic beat (SVEB) and the ventricular ectopic beat (VEB) over the normal heartbeats. We model errors using a ternary symmetric channel with probability parameter p and construct a variety of ternary LDPC codes with different coding rates by concatenating two-component sub-matrices to form a parity-check matrix with a quasi-cyclic structure that facilitates the hardware design. In particular, a hardware-friendly LDPC encoder circuit is proposed that leverages the highly structured parity-check matrix to perform serial generation of the parity symbols using an accumulator and a look-up table. The encoder circuits are implemented on FPGA and synthesized on ASIC using a 32 nm CMOS process. Simulation results show that the ternary LDPC codes can significantly improve classification accuracy in the presence of errors. For example, with an error probability of up to 21% in the sensor output bitstreams, the classification accuracy remains above 99% with the proposed error correction system.more » « less
-
Iterative decoding of graph-based codes and sparse recovery through approximate message passing (AMP) are two research areas that have seen monumental progress in recent decades. Inspired by these advances, this article introduces sparse regression LDPC codes (SR-LDPC codes) and their decoding. Sparse regression codes (SPARCs) are a class of error correcting codes that build on ideas from compressed sensing and can be decoded using AMP. In certain settings, SPARCs are known to achieve capacity; yet, their performance suffers at finite block lengths. Likewise, low-density parity-check (LDPC) codes can be decoded efficiently using belief propagation and can also be capacity achieving. This article introduces a novel concatenated coding structure that combines an LDPC outer code with a SPARC-inspired inner code. Efficient decoding for such a code can be achieved using AMP with a denoiser that performs belief propagation on the factor graph of the outer LDPC code. The proposed framework exhibits performance improvements over SPARCs and standard LDPC codes for finite block lengths and results in a steep waterfall in error performance, a phenomenon not observed in uncoded SPARCs.more » « less
-
We identify a novel method of using feedback to provide enhanced information-theoretical security in the presence of an eavesdropper. This method begins with a fixed linear coset code providing both secrecy and error detection/correction, as has been described by several authors. The legitimate receiver then sends the syndrome information for the received codeword, and based on this feedback, the transmitter can provide further error correction information specifically tailored to assist only the legitimate receiver. We show that this method allows secure communication with the legitimate receiver even when the eavesdropper’s channel is superior to that of the legitimate receiver.more » « less
An official website of the United States government

