skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Source anisotropies and pulsar timing arrays
Pulsar timing arrays (PTAs) hunt for gravitational waves (GWs) by searching for the correlations that GWs induce in the time-of-arrival residuals from different pulsars. If the GW sources are of astrophysical origin, then they are located at discrete points on the sky. However, PTA data are often modeled, and subsequently analyzed, via a “standard Gaussian ensemble.” That ensemble is obtained in the limit of an infinite density of vanishingly weak, Poisson-distributed sources. In this paper, we move away from that ensemble, to study the effects of two types of “source anisotropy.” The first (a), which is often called “shot noise,” arises because there are N discrete GW sources at specific sky locations. The second (b) arises because the GW source positions are not a Poisson process, for example, because galaxy locations are clustered. Here, we quantify the impact of (a) and (b) on the mean and variance of the pulsar-averaged Hellings and Downs correlation. For conventional PTA sources, we show that the effects of shot noise (a) are much larger than the effects of clustering (b). Published by the American Physical Society2024  more » « less
Award ID(s):
2020265
PAR ID:
10579494
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Physical Review D
Date Published:
Journal Name:
Physical Review D
Volume:
110
Issue:
12
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pulsar timing arrays (PTAs) detect gravitational waves (GWs) via the correlations they create in the arrival times of pulses from different pulsars. The mean correlation, a function of the angle between the directions to two pulsars, was predicted in 1983 by Hellings and Downs (HD). Observation of this angular pattern is crucial evidence that GWs are present, so PTAs “reconstruct the HD curve” by estimating the correlation using pulsar pairs separated by similar angles. Several studies have examined the amount by which this curve is expected to differ from the HD mean. The variance arises because (a) a finite set of pulsars at specific sky locations is used, (b) the GW sources interfere, and (c) the data are contaminated by noise. Here, for a Gaussian ensemble of sources, we predict that variance by constructing an optimal estimator of the HD correlation, taking into account the pulsar sky locations and the frequency distribution of the GWs and the pulsar noise. The variance is a ratio: the numerator depends upon the pulsar sky locations, and the denominator is the (effective) number of frequency bins for which the GW signal dominates the noise. In effect, after suitable combination, each such frequency bin gives an independent estimate of the HD correlation. Published by the American Physical Society2025 
    more » « less
  2. Metric perturbations induced by ultralight dark matter (ULDM) fields have long been identified as a potential target for pulsar timing array (PTA) observations. Previous works have focused on the coherent oscillation of metric perturbations at the characteristic frequency set by the ULDM mass. In this work, we show that ULDM fields source low-frequency stochastic metric fluctuations and that these low-frequency fluctuations can produce distinctive detectable signals in PTA data. Using the NANOGrav 12.5-yr dataset and synthetic datasets mimicking present and future PTA capabilities, we show that the current and future PTA observations provide the strongest probe of ULDM density within the Solar System for masses in the range of 10 18 eV 10 16 eV . Published by the American Physical Society2024 
    more » « less
  3. Shot noise measures out-of-equilibrium current fluctuations and is a powerful tool to probe the nature of current-carrying excitations in quantum systems. Recent shot-noise measurements in the heavy-fermion strange metal YbRh 2 Si 2 exhibit a strong suppression of the Fano factor ( F )—the ratio of the current noise to the average current in the dc limit. This system is representative of metals in which electron correlations are extremely strong. Here we carry out the first theoretical study on the shot noise of diffusive metals in the regime of strong correlations. A Boltzmann-Langevin equation formulation is constructed in a quasiparticle description in the presence of strong correlations. We find that F = 3 / 4 in such a correlation regime. Thus, we establish the aforementioned Fano factor as universal to Fermi liquids, and we show that the Fano factor suppression observed in experiments on YbRh 2 Si 2 necessitates a loss of the quasiparticles. Our work opens the door to systematic theoretical studies of shot noise as a means of characterizing strongly correlated metallic phases and materials. Published by the American Physical Society2024 
    more » « less
  4. Abstract Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low-frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of future PTA experiments with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287. 
    more » « less
  5. Abstract Pulsar timing arrays (PTAs) are designed to detect low-frequency gravitational waves (GWs). GWs induce achromatic signals in PTA data, meaning that the timing delays do not depend on radio frequency. However, pulse arrival times are also affected by radio-frequency-dependent “chromatic” noise from sources such as dispersion measure (DM) and scattering delay variations. Furthermore, the characterization of GW signals may be influenced by the choice of chromatic noise model for each pulsar. To better understand this effect, we assess if and how different chromatic noise models affect the achromatic noise properties in each pulsar. The models we compare include existing DM models used by the North American Nanohertz Observatory for Gravitational waves (NANOGrav) and noise models used for the European PTA Data Release 2 (EPTA DR2). We perform this comparison using a subsample of six pulsars from the NANOGrav 15 yr data set, selecting the same six pulsars as from the EPTA DR2 six-pulsar data set. We find that the choice of chromatic noise model noticeably affects the achromatic noise properties of several pulsars. This is most dramatic for PSR J1713+0747, where the amplitude of its achromatic red noise lowers from log 10 A RN = 14.1 0.1 + 0.1 to 14.7 0.5 + 0.3 , and the spectral index broadens from γ RN = 2.6 0.4 + 0.5 to γ RN = 3.5 0.9 + 1.2 . We also compare each pulsar's noise properties with those inferred from the EPTA DR2, using the same models. From the discrepancies, we identify potential areas where the noise models could be improved. These results highlight the potential for custom chromatic noise models to improve PTA sensitivity to GWs. 
    more » « less