Pulsar timing arrays (PTAs) detect gravitational waves (GWs) via the correlations they create in the arrival times of pulses from different pulsars. The mean correlation, a function of the angle between the directions to two pulsars, was predicted in 1983 by Hellings and Downs (HD). Observation of this angular pattern is crucial evidence that GWs are present, so PTAs “reconstruct the HD curve” by estimating the correlation using pulsar pairs separated by similar angles. Several studies have examined the amount by which this curve is expected to differ from the HD mean. The variance arises because (a) a finite set of pulsars at specific sky locations is used, (b) the GW sources interfere, and (c) the data are contaminated by noise. Here, for a Gaussian ensemble of sources, we predict that variance by constructing an optimal estimator of the HD correlation, taking into account the pulsar sky locations and the frequency distribution of the GWs and the pulsar noise. The variance is a ratio: the numerator depends upon the pulsar sky locations, and the denominator is the (effective) number of frequency bins for which the GW signal dominates the noise. In effect, after suitable combination, each such frequency bin gives an independent estimate of the HD correlation. Published by the American Physical Society2025
more »
« less
This content will become publicly available on December 1, 2025
Source anisotropies and pulsar timing arrays
Pulsar timing arrays (PTAs) hunt for gravitational waves (GWs) by searching for the correlations that GWs induce in the time-of-arrival residuals from different pulsars. If the GW sources are of astrophysical origin, then they are located at discrete points on the sky. However, PTA data are often modeled, and subsequently analyzed, via a “standard Gaussian ensemble.” That ensemble is obtained in the limit of an infinite density of vanishingly weak, Poisson-distributed sources. In this paper, we move away from that ensemble, to study the effects of two types of “source anisotropy.” The first (a), which is often called “shot noise,” arises because there are discrete GW sources at specific sky locations. The second (b) arises because the GW source positions are not a Poisson process, for example, because galaxy locations are clustered. Here, we quantify the impact of (a) and (b) on the mean and variance of the pulsar-averaged Hellings and Downs correlation. For conventional PTA sources, we show that the effects of shot noise (a) are much larger than the effects of clustering (b). Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2020265
- PAR ID:
- 10579494
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 12
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metric perturbations induced by ultralight dark matter (ULDM) fields have long been identified as a potential target for pulsar timing array (PTA) observations. Previous works have focused on the coherent oscillation of metric perturbations at the characteristic frequency set by the ULDM mass. In this work, we show that ULDM fields source low-frequency stochastic metric fluctuations and that these low-frequency fluctuations can produce distinctive detectable signals in PTA data. Using the NANOGrav 12.5-yr dataset and synthetic datasets mimicking present and future PTA capabilities, we show that the current and future PTA observations provide the strongest probe of ULDM density within the Solar System for masses in the range of . Published by the American Physical Society2024more » « less
-
Shot noise measures out-of-equilibrium current fluctuations and is a powerful tool to probe the nature of current-carrying excitations in quantum systems. Recent shot-noise measurements in the heavy-fermion strange metal exhibit a strong suppression of the Fano factor ( )—the ratio of the current noise to the average current in the dc limit. This system is representative of metals in which electron correlations are extremely strong. Here we carry out the first theoretical study on the shot noise of diffusive metals in the regime of strong correlations. A Boltzmann-Langevin equation formulation is constructed in a quasiparticle description in the presence of strong correlations. We find that in such a correlation regime. Thus, we establish the aforementioned Fano factor as universal to Fermi liquids, and we show that the Fano factor suppression observed in experiments on necessitates a loss of the quasiparticles. Our work opens the door to systematic theoretical studies of shot noise as a means of characterizing strongly correlated metallic phases and materials. Published by the American Physical Society2024more » « less
-
Abstract Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low-frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of future PTA experiments with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287.more » « less
-
We present an enhanced method for the application of Gaussian mixture modeling (GMM) to the coherent WaveBurst (cWB) algorithm in the search for short-duration gravitational wave (GW) transients. The supervised machine learning method of GMM allows for the multidimensional distributions of noise and signal to be modeled over a set of representative attributes, which aids in the classification of GW signals against noise transients (glitches) in the data. We demonstrate that updating the approach to model construction eliminates bias previously seen in the GMM analysis, increasing the robustness and sensitivity of the analysis over a wider range of burst source populations. The enhanced methodology is applied to the generic burst all-sky short search in the LIGO-Virgo full third observing run (O3), marking the first application of GMM to the 3 detector Livingston-Hanford-Virgo network. For both 2- and 3- detector networks, we observe comparable sensitivities to an array of generic signal morphologies, with significant sensitivity improvements to waveforms in the low quality factor parameter space at false alarm rates of 1 per 100 years. This proves that GMM can effectively mitigate blip glitches, which are one of the most problematic sources of noise for unmodeled GW searches. The cWB-GMM search recovers similar numbers of compact binary coalescence (CBC) events as other cWB postproduction methods, and concludes on no new gravitational wave detection after known CBC events are removed. Published by the American Physical Society2024more » « less
An official website of the United States government
