skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic ultralight dark matter fluctuations in pulsar timing arrays
Metric perturbations induced by ultralight dark matter (ULDM) fields have long been identified as a potential target for pulsar timing array (PTA) observations. Previous works have focused on the coherent oscillation of metric perturbations at the characteristic frequency set by the ULDM mass. In this work, we show that ULDM fields source low-frequency stochastic metric fluctuations and that these low-frequency fluctuations can produce distinctive detectable signals in PTA data. Using the NANOGrav 12.5-yr dataset and synthetic datasets mimicking present and future PTA capabilities, we show that the current and future PTA observations provide the strongest probe of ULDM density within the Solar System for masses in the range of 10 18 eV 10 16 eV . Published by the American Physical Society2024  more » « less
Award ID(s):
2020265
PAR ID:
10579529
Author(s) / Creator(s):
;
Publisher / Repository:
Physical Review D
Date Published:
Journal Name:
Physical Review D
Volume:
109
Issue:
5
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Massive scalar fields are promising candidates for addressing many unresolved problems in fundamental physics. We report the first model-agnostic Bayesian search of massive scalar fields that are nonminimally coupled to gravity in LIGO/Virgo/KAGRA gravitational-wave data. We find no evidence for such fields and place the most stringent upper limits on their coupling for scalar masses 2 × 10 12 eV . We exemplify the strength of these bounds by applying them to massive scalar-Gauss-Bonnet gravity, finding the tightest constraints on the coupling constant to date, α GB 1 km for scalar masses 10 13 eV to 90% credible level. Published by the American Physical Society2025 
    more » « less
  2. In a broad class of theories, the accumulation of ultralight dark matter (ULDM) with particles of mass 10 22 eV < m ϕ < 1 eV leads to the formation of long-lived bound states known as boson stars. When the ULDM exhibits self-interactions, prodigious bursts of energy carried by relativistic bosons are released from collapsing boson stars in bosenova explosions. We extensively explore the potential reach of terrestrial and space-based experiments for detecting transient signatures of emitted relativistic bursts of scalar particles, including ULDM coupled to photons, electrons, and gluons, capturing a wide range of motivated theories. For the scenario of relaxion ULDM, we demonstrate that upcoming experiments and technology such as nuclear clocks as well as space-based interferometers will be able to sensitively probe orders of magnitude in the ULDM coupling-mass parameter space, challenging to study otherwise, by detecting signatures of transient bosenova events. Detection of a bosenova event may also give information about microphysics properties of ϕ that would otherwise be difficult with typical direct detection methods. Our analysis can be readily extended to different scenarios of relativistic scalar particle emission. Published by the American Physical Society2024 
    more » « less
  3. High-intensity neutron beams, such as those available at the European Spallation Source (ESS), provide new opportunities for fundamental discoveries. Here, we discuss a novel Ramsey neutron-beam experiment to search for ultralight axion dark matter through its coupling to neutron spins, which would cause the neutron spins to rotate about the velocity of the neutrons relative to the dark matter halo. We estimate that experiments at the HIBEAM beamline with a 50 m free flight path at the ESS can improve the sensitivity to the axion-neutron coupling compared to the current best laboratory limits by up to 2–3 orders of magnitude over the axion mass range 10 22 eV 10 16 eV . Published by the American Physical Society2024 
    more » « less
  4. We perform the first search for ultralight dark matter using a magnetically levitated particle. A submillimeter permanent magnet is levitated in a superconducting trap with a measured force sensitivity of 0.2 fN / Hz . We find no evidence of a signal and derive limits on dark matter coupled to the difference between baryon and lepton number, B L , in the mass range ( 1.10360 1.10485 ) × 10 13 eV / c 2 . Our most stringent limit on the coupling strength is g B L 2.98 × 10 21 . We propose the POLONAISE (Probing Oscillations using Levitated Objects for Novel Accelerometry In Searches of Exotic physics) experiment, which features short-, medium-, and long-term upgrades that will give us leading sensitivity in a wide mass range, demonstrating the promise of this novel quantum sensing technology in the hunt for dark matter. Published by the American Physical Society2025 
    more » « less
  5. We measure the branching fraction and C P -violating flavor-dependent rate asymmetry of B 0 π 0 π 0 decays reconstructed using the Belle II detector in an electron-positron collision sample containing 387 × 10 6 ϒ ( 4 S ) mesons. Using an optimized event selection, we find 125 ± 20 signal decays in a fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is ( 1.25 ± 0.23 ) × 10 6 and the C P -violating asymmetry is 0.03 ± 0.30 . Published by the American Physical Society2025 
    more » « less