skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 18, 2026

Title: Scaling limits and universality: Critical percolation on weighted graphs converging to an 𝐿³ graphon
We develop a general universality technique for establishing metric scaling limits of critical random discrete structures exhibiting mean-field behavior that requires four ingredients: (i) from the barely subcritical regime to the critical window, components merge approximately like the multiplicative coalescent, (ii) asymptotics of the susceptibility functions are the same as that of the Erdős-Rényi random graph, (iii) asymptotic negligibility of the maximal component size and the diameter in the barely subcritical regime, and (iv) macroscopic averaging of distances between vertices in the barely subcritical regime. As an application of the general universality theorem, we establish, under some regularity conditions, the critical percolation scaling limit of graphs that converge, in a suitable topology, to an L 3 L^3 graphon. In particular, we define a notion of the critical window in this setting. The L 3 L^3 assumption ensures that the model is in the Erdős-Rényi universality class and that the scaling limit is Brownian. Our results do not assume any specific functional form for the graphon. As a consequence of our results on graphons, we obtain the metric scaling limit for Aldous-Pittel’s RGIV model inside the critical window (see D.J. Aldous and B. Pittel [Random Structures Algorithms 17 (2000), pp. 79–102]). Our universality principle has applications in a number of other problems including in the study of noise sensitivity of critical random graphs (see E. Lubetzky and Y. Peled [Israel J. Math. 252 (2022), pp. 187–214]). In Bhamidi et al. [Scaling limits and universality II: geometry of maximal components in dynamic random graph models in the critical regime, In preparation], we use our universality theorem to establish the metric scaling limit of critical bounded size rules. Our method should yield the critical metric scaling limit of Ruciński and Wormald’s random graph process with degree restrictions provided an additional technical condition about the barely subcritical behavior of this model can be proved (see A. Ruciński and N. C. Wormald [Combin. Probab. Comput. 1 (1992), pp. 169–180]).  more » « less
Award ID(s):
2134107
PAR ID:
10579611
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove that the weak- L p L^{p} norms, and in fact the sparse ( p , 1 ) (p,1) -norms, of the Carleson maximal partial Fourier sum operator are ≲<#comment/> ( p −<#comment/> 1 ) −<#comment/> 1 \lesssim (p-1)^{-1} as p →<#comment/> 1 + p\to 1^+ . This is an improvement on the Carleson-Hunt theorem, where the same upper bound on the growth order is obtained for the restricted weak- L p L^p type norm, and which was the strongest quantitative bound prior to our result. Furthermore, our sparse ( p , 1 ) (p,1) -norms bound imply new and stronger results at the endpoint p = 1 p=1 . In particular, we obtain that the Fourier series of functions from the weighted Arias de Reyna space Q A ∞<#comment/> ( w ) \mathrm {QA}_{\infty }(w) , which contains the weighted Antonov space L log ⁡<#comment/> L log ⁡<#comment/> log ⁡<#comment/> log ⁡<#comment/> L ( T ; w ) L\log L\log \log \log L(\mathbb T; w) , converge almost everywhere whenever w ∈<#comment/> A 1 w\in A_1 . This is an extension of the results of Antonov [Proceedings of the XXWorkshop on Function Theory (Moscow, 1995), 1996, pp. 187–196] and Arias De Reyna, where w w must be Lebesgue measure. The backbone of our treatment is a new, sharply quantified near- L 1 L^1 Carleson embedding theorem for the modulation-invariant wave packet transform. The proof of the Carleson embedding relies on a newly developed smooth multi-frequency decomposition which, near the endpoint p = 1 p=1 , outperforms the abstract Hilbert space approach of past works, including the seminal one by Nazarov, Oberlin and Thiele [Math. Res. Lett. 17 (2010), pp. 529–545]. As a further example of application, we obtain a quantified version of the family of sparse bounds for the bilinear Hilbert transforms due to Culiuc, Ou and the first author. 
    more » « less
  2. This article studies the properties of positive definite, radial functions on free groups following the work of Haagerup and Knudby [Proc. Amer. Math. Soc. 143 (2015), pp. 1477–1489]. We obtain characterizations of radial functions with respect to the ℓ<#comment/> 2 \ell ^{2} length on the free groups with infinite generators and the characterization of the positive definite, radial functions with respect to the ℓ<#comment/> p \ell ^{p} length on the free real line with infinite generators for 0 > p ≤<#comment/> 2 0 > p \leq 2 . We obtain a Lévy-Khintchine formula for length-radial conditionally negative functions as well. 
    more » « less
  3. Let ( G / Γ<#comment/> , R a ) (G/\Gamma ,R_a) be an ergodic k k -step nilsystem for k ≥<#comment/> 2 k\geq 2 . We adapt an argument of Parry [Topology 9 (1970), pp. 217–224] to show that L 2 ( G / Γ<#comment/> ) L^2(G/\Gamma ) decomposes as a sum of a subspace with discrete spectrum and a subspace of Lebesgue spectrum with infinite multiplicity. In particular, we generalize a result previously established by Host–Kra–Maass [J. Anal. Math.124(2014), pp. 261–295] for 2 2 -step nilsystems and a result by Stepin [Uspehi Mat. Nauk24(1969), pp. 241–242] for nilsystems G / Γ<#comment/> G/\Gamma with connected, simply connected G G
    more » « less
  4. We show that for any even log-concave probability measure μ<#comment/> \mu on R n \mathbb {R}^n , any pair of symmetric convex sets K K and L L , and any λ<#comment/> ∈<#comment/> [ 0 , 1 ] \lambda \in [0,1] , μ<#comment/> ( ( 1 −<#comment/> λ<#comment/> ) K + λ<#comment/> L ) c n ≥<#comment/> ( 1 −<#comment/> λ<#comment/> ) μ<#comment/> ( K ) c n + λ<#comment/> μ<#comment/> ( L ) c n , \begin{equation*} \mu ((1-\lambda ) K+\lambda L)^{c_n}\geq (1-\lambda ) \mu (K)^{c_n}+\lambda \mu (L)^{c_n}, \end{equation*} where c n ≥<#comment/> n −<#comment/> 4 −<#comment/> o ( 1 ) c_n\geq n^{-4-o(1)} . This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333–5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139]). Moreover, our bound improves for various special classes of log-concave measures. 
    more » « less
  5. Many complex disordered systems in statistical mechanics are characterized by intricate energy landscapes. The ground state, the configuration with lowest energy, lies at the base of the deepest valley. In important examples, such as Gaussian polymers and spin glass models, the landscape has many valleys and the abundance of near-ground states (at the base of valleys) indicates the phenomenon ofchaos, under which the ground state alters profoundly when the disorder of the model is slightly perturbed. In this article, we compute the critical exponent that governs the onset of chaos in a dynamic manifestation of a canonical model in the Kardar-Parisi-Zhang [KPZ] universality class, Brownian last passage percolation [LPP]. In this model in its static form, semidiscrete polymers advance through Brownian noise, their energy given by the integral of the white noise encountered along their journey. A ground state is ageodesic, of extremal energy given its endpoints. We perturb Brownian LPP by evolving the disorder under an Ornstein-Uhlenbeck flow. We prove that, for polymers of length n n , a sharp phase transition marking the onset of chaos is witnessed at the critical time n −<#comment/> 1 / 3 n^{-1/3} . Indeed, the overlap between the geodesics at times zero and t > 0 t > 0 that travel a given distance of order n n will be shown to be of order n n when t ≪<#comment/> n −<#comment/> 1 / 3 t\ll n^{-1/3} ; and to be of smaller order when t ≫<#comment/> n −<#comment/> 1 / 3 t\gg n^{-1/3} . We expect this exponent to be universal across a wide range of interface models. The present work thus sheds light on the dynamical aspect of the KPZ class; it builds on several recent advances. These include Chatterjee’s harmonic analytic theory [Superconcentration and related topics, Springer, Cham, 2014] of equivalence ofsuperconcentrationandchaosin Gaussian spaces; a refined understanding of the static landscape geometry of Brownian LPP developed in the companion paper (see S. Ganguly and A. Hammond [Electron. J. Probab. 28 (2023), 80 pp.]); and, underlying the latter, strong comparison estimates of the geodesic energy profile to Brownian motion (see J. Calvert, A. Hammond, and M. Hegde [Astérisque 441 (2023), pp. v+119]). 
    more » « less